Pasinetti's hyper-integrated labour coefficients and the 'pure labour theory of value'

Ian Wright, PhD Student Supervisor: Andrew Trigg

Department of Economics
The Open University Milton Keynes, UK
wrighti@acm.org
July, 2013

Outline

(1) Pasinetti's 'complete generalization of Marx's "transformation problem"'
(2) Super-integrated labor coefficients
(3) A general solution to Marx's transformation problem

Pasinetti's natural prices and hyper-integrated labor coefficients

- Pasinetti defines a linear production model with
- capital investment to meet growing demand
- and non-uniform growth across sectors

Pasinetti's natural prices and hyper-integrated labor coefficients

- Pasinetti defines a linear production model with
- capital investment to meet growing demand
- and non-uniform growth across sectors
- He splits this economy into n 'hyper-subsystems'

Pasinetti's natural prices and hyper-integrated labor coefficients

- Pasinetti defines a linear production model with
- capital investment to meet growing demand
- and non-uniform growth across sectors
- He splits this economy into n 'hyper-subsystems'
- Define n natural price systems, \mathbf{p}_{i}, for each hyper-subsystem $i \in[1, n]$, with n 'natural' profit-rates

Pasinetti's natural prices and hyper-integrated labor coefficients

- Pasinetti defines a linear production model with
- capital investment to meet growing demand
- and non-uniform growth across sectors
- He splits this economy into n 'hyper-subsystems'
- Define n natural price systems, \mathbf{p}_{i}, for each hyper-subsystem $i \in[1, n]$, with n 'natural' profit-rates
- In general, $\mathbf{p}_{i} \neq \mathbf{v} w$, where \mathbf{v} are Classical labour-values

Pasinetti's natural prices and hyper-integrated labor coefficients

- Pasinetti defines a linear production model with
- capital investment to meet growing demand
- and non-uniform growth across sectors
- He splits this economy into n 'hyper-subsystems'
- Define n natural price systems, \mathbf{p}_{i}, for each hyper-subsystem $i \in[1, n]$, with n 'natural' profit-rates
- In general, $\mathbf{p}_{i} \neq \mathbf{v} w$, where \mathbf{v} are Classical labour-values
- Vertically hyper-integrated labour coefficients, \mathbf{v}_{i}^{\star}, include the labor cost of producing capital investment goods

Pasinetti's natural prices and hyper-integrated labor coefficients

- Pasinetti defines a linear production model with
- capital investment to meet growing demand
- and non-uniform growth across sectors
- He splits this economy into n 'hyper-subsystems'
- Define n natural price systems, \mathbf{p}_{i}, for each hyper-subsystem $i \in[1, n]$, with n 'natural' profit-rates
- In general, $\mathbf{p}_{i} \neq \mathbf{v} w$, where \mathbf{v} are Classical labour-values
- Vertically hyper-integrated labour coefficients, \mathbf{v}_{i}^{\star}, include the labor cost of producing capital investment goods
- 'A complete generalization of the pure labour theory of value':

$$
\mathbf{p}_{i}=\mathbf{v}_{i}^{\star} \mathbf{w}
$$

'A complete generalization of Marx's "transformation problem"'

- Consider single natural price structure, \mathbf{p}, with uniform profit-rate
- 'A complete generalization of Marx's "transformation problem"': in general, $\mathbf{p}_{i} \neq \mathbf{v}_{i}^{\star} \mathbf{w}$

'A complete generalization of Marx's "transformation problem"'

- Consider single natural price structure, \mathbf{p}, with uniform profit-rate
- 'A complete generalization of Marx's "transformation problem"': in general, $\mathbf{p}_{i} \neq \mathbf{v}_{i}^{\star} \mathbf{w}$
- Pasinetti: 'A theory of value in terms of pure labour can never reflect the price structure that emerges from ... the market in a capitalist economy'

'A complete generalization of Marx's "transformation problem"'

- Consider single natural price structure, p, with uniform profit-rate
- 'A complete generalization of Marx's "transformation problem"': in general, $\mathbf{p}_{i} \neq \mathbf{v}_{i}^{\star} \mathbf{w}$
- Pasinetti: 'A theory of value in terms of pure labour can never reflect the price structure that emerges from ... the market in a capitalist economy'
- Pasinetti restricts labour theory of value to a 'logical frame of reference'

'A complete generalization of Marx's "transformation problem"'

- Consider single natural price structure, p, with uniform profit-rate
- 'A complete generalization of Marx's "transformation problem"': in general, $\mathbf{p}_{i} \neq \mathbf{v}_{i}^{\star} \mathbf{w}$
- Pasinetti: 'A theory of value in terms of pure labour can never reflect the price structure that emerges from ... the market in a capitalist economy'
- Pasinetti restricts labour theory of value to a 'logical frame of reference'
- Is this right?

The special case: production-prices

- Consider special case: simple reproduction

The special case: production-prices

- Consider special case: simple reproduction
- Production-prices,

$$
\mathbf{p}=\mathbf{p} \mathbf{A}(1+r)+\mathbf{l} w
$$

The special case: production-prices

- Consider special case: simple reproduction
- Production-prices,

$$
\begin{aligned}
\mathbf{p} & =\mathbf{p} \mathbf{A}(1+r)+\mathbf{l} w \\
& =\mathbf{l} w+\mathbf{l} \mathbf{A} w(1+r)+\mathbf{l} \mathbf{A}^{2} w(1+r)^{2}+\cdots+\mathbf{l}^{n} w(1+r)^{n}+\ldots
\end{aligned}
$$

- Prices are a sum of labor costs, $\mathbf{l A}^{n} w$, multiplied by compound profit factor, $(1+r)^{n}$

The special case: production-prices

- Consider special case: simple reproduction
- Production-prices,

$$
\begin{aligned}
\mathbf{p} & =\mathbf{p} \mathbf{A}(1+r)+\mathbf{l} w \\
& =\mathbf{l} w+\mathbf{l} \mathbf{A} w(1+r)+\mathbf{l} \mathbf{A}^{2} w(1+r)^{2}+\cdots+\mathbf{l} \mathbf{A}^{n} w(1+r)^{n}+\ldots
\end{aligned}
$$

- Prices are a sum of labor costs, $\mathbf{l A}^{n} w$, multiplied by compound profit factor, $(1+r)^{n}$
- $r=0 \Longrightarrow \mathbf{p}=\mathbf{v} w$, otherwise $\mathbf{p} \neq \mathbf{v} w$

The special case: production-prices

- Consider special case: simple reproduction
- Production-prices,

$$
\begin{aligned}
\mathbf{p} & =\mathbf{p} \mathbf{A}(1+r)+\mathbf{l} w \\
& =\mathbf{l} w+\mathbf{l} \mathbf{A} w(1+r)+\mathbf{l} \mathbf{A}^{2} w(1+r)^{2}+\cdots+\mathbf{l} \mathbf{A}^{n} w(1+r)^{n}+\ldots
\end{aligned}
$$

- Prices are a sum of labor costs, $\mathbf{l A}^{n} w$, multiplied by compound profit factor, $(1+r)^{n}$
- $r=0 \Longrightarrow \mathbf{p}=\mathbf{v} w$, otherwise $\mathbf{p} \neq \mathbf{v} w$
- Prices not completely reducible to labor costs

The distribution of real income

- Given a distribution of real income, e.g.

$$
\mathbf{q}=\mathbf{q} \mathbf{A}^{\top}+\mathbf{w}+\mathbf{c}
$$

The distribution of real income

- Given a distribution of real income, e.g.

$$
\mathbf{q}=\mathbf{q} \mathbf{A}^{\top}+\mathbf{w}+\mathbf{c}
$$

- Price and quantity equation imply

$$
\mathbf{p A} \mathbf{q}^{\top} r+\mathbf{l q}^{\top} w=\mathbf{p} \mathbf{w}^{\top}+\mathbf{p} \mathbf{c}^{\top}
$$

The distribution of real income

- Given a distribution of real income, e.g.

$$
\mathbf{q}=\mathbf{q} \mathbf{A}^{\top}+\mathbf{w}+\mathbf{c}
$$

- Price and quantity equation imply

$$
\mathbf{p} \mathbf{A} \mathbf{q}^{\top} r+\mathbf{l q}^{\top} w=\mathbf{p} \mathbf{w}^{\top}+\mathbf{p} \mathbf{c}^{\top}
$$

- Workers spend what they earn

$$
\mathbf{l q}^{\top} w=\mathbf{p w}^{\top}
$$

- Capitalists spend what they earn

$$
\mathbf{p} \mathbf{A q}^{\top} r=\mathbf{p c}^{\top}
$$

An equivalent representation of production-prices

- Substitute $r=\frac{\mathbf{p c}^{\top}}{\mathbf{p A q}^{\top}}$ into price equation $\mathbf{p}=\mathbf{p A}(1+r)+\mathbf{l} w$

$$
\mathbf{p}=\mathbf{p} \mathbf{A}\left(1+\frac{\mathbf{p c}^{\top}}{\mathbf{p} \mathbf{A q}}\right)+\mathbf{l} w
$$

An equivalent representation of production-prices

- Substitute $r=\frac{\mathbf{p c}^{\top}}{\mathbf{p A q}^{\top}}$ into price equation $\mathbf{p}=\mathbf{p A}(1+r)+\mathbf{l} w$

$$
\begin{aligned}
& \mathbf{p}=\mathbf{p A}\left(1+\frac{\mathbf{p c}^{\top}}{\mathbf{p A}^{\top}}\right)+\mathbf{l} w \\
& \mathbf{p}=\mathbf{p A}+\frac{\mathbf{p c}^{\top}}{\mathbf{p A q}^{\top}} \mathbf{p A}+\mathbf{l} w
\end{aligned}
$$

An equivalent representation of production-prices

- Substitute $r=\frac{\mathbf{p c}^{\top}}{\mathbf{p A} \mathbf{q}^{\top}}$ into price equation $\mathbf{p}=\mathbf{p A}(1+r)+\mathbf{l} w$

$$
\begin{aligned}
\mathbf{p} & =\mathbf{p A}\left(1+\frac{\mathbf{p c}^{\top}}{\mathbf{p A q}^{\top}}\right)+\mathbf{l} w \\
\mathbf{p} & =\mathbf{p} \mathbf{A}+\frac{\mathbf{p c}^{\top}}{\mathbf{p A q}^{\top}} \mathbf{p} \mathbf{A}+\mathbf{l} w \\
& =\mathbf{p}\left(\mathbf{A}+\frac{1}{\mathbf{p} \mathbf{A q} \mathbf{q}^{\top}} \mathbf{c}^{\top} \mathbf{p} \mathbf{A}\right)+\mathbf{l} w
\end{aligned}
$$

An equivalent representation of production-prices

- Substitute $r=\frac{\mathbf{p c}^{\top}}{\mathbf{p A} \mathbf{q}^{\top}}$ into price equation $\mathbf{p}=\mathbf{p A}(1+r)+\mathbf{l} w$

$$
\begin{aligned}
\mathbf{p} & =\mathbf{p} \mathbf{A}\left(1+\frac{\mathbf{p c}^{\top}}{\mathbf{p A q}^{\top}}\right)+\mathbf{l} w \\
\mathbf{p} & =\mathbf{p A}+\frac{\mathbf{p c}^{\top}}{\mathbf{p A q}^{\top}} \mathbf{p} \mathbf{A}+\mathbf{l} w \\
& =\mathbf{p}\left(\mathbf{A}+\frac{1}{\mathbf{p A \mathbf { A q } ^ { \top }}} \mathbf{c}^{\top} \mathbf{p A}\right)+\mathbf{l} w \\
& =\mathbf{p A}+\mathbf{p} \mathbf{C}+\mathbf{l} w
\end{aligned}
$$

where matrix $\mathbf{C}=\left[c_{i, j}\right]$, such that

$$
c_{i, j}=\frac{\mathbf{p} \mathbf{A}^{(j)}}{\mathbf{p} \mathbf{A q}} c_{i}
$$

The capitalist consumption matrix

- What is matrix \mathbf{C} ?

$$
c_{i, j}=\mathbf{p} \mathbf{A}^{(j)} r \frac{c_{i}}{\mathbf{p A q} \mathbf{q}^{\top} r}
$$

The capitalist consumption matrix

- What is matrix \mathbf{C} ?

$$
c_{i, j}=\mathbf{p A}{ }^{(j)} r \frac{c_{i}}{\mathbf{p A q} \mathbf{q}^{\top} r}
$$

- Profit income generated by the sale of 1 unit of commodity j

The capitalist consumption matrix

- What is matrix \mathbf{C} ?

$$
c_{i, j}=\mathbf{p} \mathbf{A}^{(j)} r \frac{c_{i}}{\mathbf{p A q}^{\top} r}
$$

- Profit income generated by the sale of 1 unit of commodity j
- The quantity of commodity i distributed to capitalists per unit of profit income

The capitalist consumption matrix

- What is matrix \mathbf{C} ?

$$
c_{i, j}=\mathbf{p} \mathbf{A}^{(j)} r \frac{c_{i}}{\mathbf{p A q}^{\top} r}
$$

- Profit income generated by the sale of 1 unit of commodity j
- The quantity of commodity i distributed to capitalists per unit of profit income
- Hence $c_{i, j}$ is the quantity of commodity i distributed to capitalists per unit output of commodity j

The capitalist consumption matrix

- What is matrix \mathbf{C} ?

$$
c_{i, j}=\mathbf{p} \mathbf{A}^{(j)} r \frac{c_{i}}{\mathbf{p A q} \mathbf{q}^{\top} r}
$$

- Profit income generated by the sale of 1 unit of commodity j
- The quantity of commodity i distributed to capitalists per unit of profit income
- Hence $c_{i, j}$ is the quantity of commodity i distributed to capitalists per unit output of commodity j
- Matrix \mathbf{C} is a 'capitalist consumption matrix'
- \mathbf{C} has same units as \mathbf{A}, i.e. \mathbf{C} is a 'physical' input-output matrix

Production-prices revisited

- Production-prices,

$$
\mathbf{p}=\mathbf{p} \mathbf{A}(1+r)+\mathbf{l} w
$$

Production-prices revisited

- Production-prices,

$$
\begin{aligned}
\mathbf{p} & =\mathbf{p} \mathbf{A}(1+r)+\mathbf{l} w \\
& =\mathbf{p} \mathbf{A}+\mathbf{p} \mathbf{C}+\mathbf{l} w
\end{aligned}
$$

Production-prices revisited

- Production-prices,

$$
\begin{aligned}
\mathbf{p} & =\mathbf{p} \mathbf{A}(1+r)+\mathbf{l} w \\
& =\mathbf{p A}+\mathbf{p C}+\mathbf{l} w \\
& =\mathbf{l} w+\mathbf{l}(\mathbf{A}+\mathbf{C}) w+\mathbf{l}(\mathbf{A}+\mathbf{C})^{2} w+\cdots+\mathbf{l}(\mathbf{A}+\mathbf{C})^{n} w+\ldots
\end{aligned}
$$

- Prices are a sum of labor costs, including labor cost of producing capitalist consumption goods

Production-prices revisited

- Production-prices,

$$
\begin{aligned}
\mathbf{p} & =\mathbf{p} \mathbf{A}(1+r)+\mathbf{l} w \\
& =\mathbf{p A}+\mathbf{p C}+\mathbf{l} w \\
& =\mathbf{l} w+\mathbf{l}(\mathbf{A}+\mathbf{C}) w+\mathbf{l}(\mathbf{A}+\mathbf{C})^{2} w+\cdots+\mathbf{l}(\mathbf{A}+\mathbf{C})^{n} w+\ldots
\end{aligned}
$$

- Prices are a sum of labor costs, including labor cost of producing capitalist consumption goods
- Nominal variable r replaced by real variable C

Production-prices revisited

- Production-prices,

$$
\begin{aligned}
\mathbf{p} & =\mathbf{p} \mathbf{A}(1+r)+\mathbf{l} w \\
& =\mathbf{p A}+\mathbf{p C}+\mathbf{l} w \\
& =\mathbf{l} w+\mathbf{l}(\mathbf{A}+\mathbf{C}) w+\mathbf{l}(\mathbf{A}+\mathbf{C})^{2} w+\cdots+\mathbf{l}(\mathbf{A}+\mathbf{C})^{n} w+\ldots
\end{aligned}
$$

- Prices are a sum of labor costs, including labor cost of producing capitalist consumption goods
- Nominal variable r replaced by real variable C
- Prices completely reducible to labor costs

Nonstandard labour-values

Definition

Nonstandard labour-values are $\tilde{\mathbf{v}}=\tilde{\mathbf{v}} \tilde{\mathbf{A}}+1$, where $\tilde{\mathbf{A}}=\mathbf{A}+\mathbf{C}$ is the technique augmented by capitalist consumption.

Nonstandard labour-values

Definition

Nonstandard labour-values are $\tilde{\mathbf{v}}=\tilde{\mathbf{v}} \tilde{\mathbf{A}}+1$, where $\tilde{\mathbf{A}}=\mathbf{A}+\mathbf{C}$ is the technique augmented by capitalist consumption.

Theorem (Equivalence theorem)

Given an economy with production-prices, $\mathbf{p}=\mathbf{p A}(1+r)+\mathbf{l} w$, quantities, $\mathbf{q}=\mathbf{q} \mathbf{A}^{T}+\mathbf{w}+\mathbf{c}$, and zero saving (i.e. workers and capitalists spend what they earn) then

$$
\mathbf{p}=\tilde{\mathbf{v}} w
$$

where $\tilde{\mathbf{v}}$ are nonstandard labour-values.

Nonstandard labour-values

Definition

Nonstandard labour-values are $\tilde{\mathbf{v}}=\tilde{\mathbf{v}} \tilde{\mathbf{A}}+1$, where $\tilde{\mathbf{A}}=\mathbf{A}+\mathbf{C}$ is the technique augmented by capitalist consumption.

Theorem (Equivalence theorem)

Given an economy with production-prices, $\mathbf{p}=\mathbf{p A}(1+r)+\mathbf{l} w$, quantities, $\mathbf{q}=\mathbf{q} \mathbf{A}^{T}+\mathbf{w}+\mathbf{c}$, and zero saving (i.e. workers and capitalists spend what they earn) then

$$
\mathbf{p}=\tilde{\mathbf{v}} w
$$

where $\tilde{\mathbf{v}}$ are nonstandard labour-values.

- p is wage bill of direct, indirect and super-indirect labour required to reproduce unit commodities.

Super-integrated labour coefficients

A family of equivalence theorems of increasing generality

- Simple commodity production: $\mathbf{p}^{\prime}=\mathbf{v} w$, where \mathbf{v} are Classical labour-values (Smith, 1776)

Super-integrated labour coefficients

A family of equivalence theorems of increasing generality

- Simple commodity production: $\mathbf{p}^{\prime}=\mathbf{v} w$, where \mathbf{v} are Classical labour-values (Smith, 1776)
- Simple reproduction: $\mathbf{p}=\tilde{\mathbf{v}} w$, where $\tilde{\mathbf{v}}$ are nonstandard labour-values (Wright, 2006)

Super-integrated labour coefficients

A family of equivalence theorems of increasing generality

- Simple commodity production: $\mathbf{p}^{\prime}=\mathbf{v} w$, where \mathbf{v} are Classical labour-values (Smith, 1776)
- Simple reproduction: $\mathbf{p}=\tilde{\mathbf{v}} w$, where $\tilde{\mathbf{v}}$ are nonstandard labour-values (Wright, 2006)
- Hyper-subsystems with 'natural' profit-rates: $\mathbf{p}_{i}=\mathbf{v}_{i}^{\star} w$, where \mathbf{v}_{i}^{\star} are hyper-integrated labour coefficients (Pasinetti, 1988)

Super-integrated labour coefficients

A family of equivalence theorems of increasing generality

- Simple commodity production: $\mathbf{p}^{\prime}=\mathbf{v} w$, where \mathbf{v} are Classical labour-values (Smith, 1776)
- Simple reproduction: $\mathbf{p}=\tilde{\mathbf{v}} w$, where $\tilde{\mathbf{v}}$ are nonstandard labour-values (Wright, 2006)
- Hyper-subsystems with 'natural' profit-rates: $\mathbf{p}_{i}=\mathbf{v}_{i}^{\star} w$, where \mathbf{v}_{i}^{\star} are hyper-integrated labour coefficients (Pasinetti, 1988)
- Pasinetti's growth model: $\mathbf{p}^{\prime \prime}=\hat{\mathbf{v}} w$, where $\hat{\mathbf{v}}$ are super-integrated labour coefficients (see Theorem 1 in paper) (Wright, 2013)

General solution to Marx's transformation problem

- Equivalence theorems have far-reaching consequences for theory of economic value

General solution to Marx's transformation problem

- Equivalence theorems have far-reaching consequences for theory of economic value
- Marx knew that production-prices do not represent Classical labour-values in a simple and direct manner

General solution to Marx's transformation problem

- Equivalence theorems have far-reaching consequences for theory of economic value
- Marx knew that production-prices do not represent Classical labour-values in a simple and direct manner
- But neither do they represent a re-weighting of Classical labour-values, as he sketched in Volume 3 of Capital

General solution to Marx's transformation problem

- Equivalence theorems have far-reaching consequences for theory of economic value
- Marx knew that production-prices do not represent Classical labour-values in a simple and direct manner
- But neither do they represent a re-weighting of Classical labour-values, as he sketched in Volume 3 of Capital
- In general, natural price structures represent total labour costs:

$$
\mathbf{p}=\stackrel{\circ}{\mathbf{v}} w
$$

where v are 'total' in the sense they reduce all real costs to labour costs

The Classical category-mistake

The Classical category-mistake

- Production-prices count the nominal income of capitalists as a component of price

The Classical category-mistake

- Production-prices count the nominal income of capitalists as a component of price
- Classical labour-values omit the real income of capitalists as a component of labor costs

The Classical category-mistake

- Production-prices count the nominal income of capitalists as a component of price
- Classical labour-values omit the real income of capitalists as a component of labor costs
- Dual systems of price and labour-values employ different cost accounting conventions

The Classical category-mistake

- Production-prices count the nominal income of capitalists as a component of price
- Classical labour-values omit the real income of capitalists as a component of labor costs
- Dual systems of price and labour-values employ different cost accounting conventions
- A 'category-mistake' (Ryle) to expect a partial measure of labor costs to be commensurate with a total measure of money costs

The Classical category-mistake

- Production-prices count the nominal income of capitalists as a component of price
- Classical labour-values omit the real income of capitalists as a component of labor costs
- Dual systems of price and labour-values employ different cost accounting conventions
- A 'category-mistake' (Ryle) to expect a partial measure of labor costs to be commensurate with a total measure of money costs
- Classical antinomies due to this category-mistake

Pasinetti's reproduction of the category-mistake

- Pasinetti's hyper-integrated labour coefficients are a partial measure of labor costs
- Hence a generalized transformation problem when compared to the price system

Pasinetti's reproduction of the category-mistake

- Pasinetti's hyper-integrated labour coefficients are a partial measure of labor costs
- Hence a generalized transformation problem when compared to the price system
- Problem disappears with a total measure of labor costs, i.e. super-integrated labour coefficients

Pasinetti's reproduction of the category-mistake

- Pasinetti's hyper-integrated labour coefficients are a partial measure of labor costs
- Hence a generalized transformation problem when compared to the price system
- Problem disappears with a total measure of labor costs, i.e. super-integrated labour coefficients
- Pasinetti's 'complete generalization' of Marx's TP reproduces, at a higher level of generality, the Classical category-mistake

Pasinetti's reproduction of the category-mistake

- Pasinetti's hyper-integrated labour coefficients are a partial measure of labor costs
- Hence a generalized transformation problem when compared to the price system
- Problem disappears with a total measure of labor costs, i.e. super-integrated labour coefficients
- Pasinetti's 'complete generalization' of Marx's TP reproduces, at a higher level of generality, the Classical category-mistake
- Conclusion: Pasinetti's restriction of the 'pure labour theory of value' to a 'logical frame of reference' is unwarranted

Questions?

Email: wrighti@acm.org
Related pre-thesis material:

- Pasinetti's hyper-integrated labour coefficients and the 'pure labour theory of value'. http://ssrn.com/abstract=2255732 (2013)
- Sraffa's incomplete reductions to labour. http://tinyurl.com/q8hkubg (2013)
- A category-mistake in the Classical labour theory of value: identification and resolution. http://ssrn.com/abstract=1963018 (2011)
- Classical macrodynamics and the labour theory of value. Open Discussion Papers in Economics, no. 76. Milton Keynes: The Open University. (2011)
- Convergence to natural prices in simple production. Open Discussion Papers in Economics, no. 75. Milton Keynes: The Open University (2011)
- On nonstandard labour values, Marx's transformation problem and Ricardo's problem of an invariable measure of value. Boletim de Ciencias Economicas LII, Universidade de Coimbra (2009)
- The emergence of the law of value in a dynamic simple commodity economy. Review of Political Economy, Vol. 20, No. 3, pages 367-391 (2008)

Dimensional analysis of capitalist consumption matrix

- We have $\mathbf{C}=\left[c_{i, j}\right]$, where

$$
c_{i, j}=\mathbf{p} \mathbf{A}^{(j)} r \frac{c_{i}}{\mathbf{p A q}^{\top} r}
$$

Dimensional analysis of capitalist consumption matrix

- We have $\mathbf{C}=\left[c_{i, j}\right]$, where

$$
c_{i, j}=\mathbf{p} \mathbf{A}^{(j)} r \frac{c_{i}}{\mathbf{p A \mathbf { A q } ^ { \top } r}}
$$

- The profit income generated by the sale of 1 unit of commodity j...

Dimensional analysis of capitalist consumption matrix

- We have $\mathbf{C}=\left[c_{i, j}\right]$, where

$$
c_{i, j}=\$ / j \frac{c_{i}}{\mathbf{p A q}^{\top} r}
$$

- ... which has units '\$ per physical unit of j '

Dimensional analysis of capitalist consumption matrix

- We have $\mathbf{C}=\left[c_{i, j}\right]$, where

$$
c_{i, j}=\$ / j \frac{c_{i}}{\mathbf{p A q}^{\top} r}
$$

- The quantity of commodity i distributed to capitalists per unit of profit income ...

Dimensional analysis of capitalist consumption matrix

- We have $\mathbf{C}=\left[c_{i, j}\right]$, where

$$
c_{i, j}=\$ / j \times i / \$
$$

- ... which has units 'physical unit of i per $\$$ '

Dimensional analysis of capitalist consumption matrix

- We have $\mathbf{C}=\left[c_{i, j}\right]$, where

$$
c_{i, j}=\frac{i}{j}
$$

- Nominal units cancel.
- Result: 'physical units of i per physical units of j '

Dimensional analysis of capitalist consumption matrix

- We have $\mathbf{C}=\left[c_{i, j}\right]$, where

$$
c_{i, j}=\frac{i}{j}
$$

- Nominal units cancel.
- Result: 'physical units of i per physical units of j '
- Interpretation: 'physical quantity of commodity i consumed per unit output of commodity j^{\prime} (e.g., 'bushels of wheat per unit output of iron')

Dimensional analysis of capitalist consumption matrix

- We have $\mathbf{C}=\left[c_{i, j}\right]$, where

$$
c_{i, j}=\frac{i}{j}
$$

- Nominal units cancel.
- Result: 'physical units of i per physical units of j '
- Interpretation: 'physical quantity of commodity i consumed per unit output of commodity j^{\prime} (e.g., 'bushels of wheat per unit output of iron')
- Technique $\mathbf{A}=\left[a_{i, j}\right]$ has same units with interpretation 'physical quantity of commodity i used-up (as means-of-production) per unit output of commodity j^{\prime}

