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bilities of a technically diverse economy can be 
represented by an aggregate production function are 
far too stringent to be believable.”4 He proposes 
therefore to investigate the puzzling uniformity of 
the empirical results by means of a simulation ex­
periment: each of N  industries in this simulated 
economy is assumed to be characterized by a micro- 
economic Cobb-Douglas production function relating 
its homogeneous output to its homogeneous labor 
input and its own distinct machine stock. The condi­
tions for theoretical aggregation are studiously vio­
lated, and the question is, how well, and under what 
circumstances, does an aggregate Cobb-Douglas 
function represent the data generated? In such an 
economy, the aggregate wage share is often variable 
over time, so that in general an aggregate Cobb- 
Douglas would not be expected to give a good fit. 
What seems to surprise Fisher, however, is that when 
the wage share happens coincidentally to be roughly 
constant, a Cobb-Douglas production function will 
not only fit the data well but also provide a good 
explanation of wages, “even though the true rela­
tionships are far from yielding an aggregate Cobb- 
Douglas,” suggesting that “the view that the con­
stancy of labor’s share is due to the presence of 
an aggregate Cobb-Douglas production function is 
mistaken. Causation runs the other way and the ap­
parent success of aggregate Cobb-Douglas produc­
tion functions is due to the relative constancy of 
labor’s share.” (emphasis added).5

I t is obvious that so long as aggregate shares are 
roughly constant, the appropriate econometric test 
of aggregate neoclassical production and distribution 
theory requires a Cobb-Douglas function. Such a 
test would then apparently cast some light on the 
degree of returns to scale (through the sum of the 
coefficients), and the applicability of aggregate mar­
ginal productivity theory (through the comparison 
of the labor and capital exponents with the wage and 
profit shares, respectively). What is not obvious, 
however, is that so long as aggregate shares are con­
stant, an aggregate Cobb-Douglas function having 
apparently “constant returns to scale” will always 
provide an exact fit, for any data whatsoever. In  
addition, under fairly reasonable conditions, such a 
function will seem also to possess “marginal products 
equal to respective factor rewards,” thus seeming to 
justify neoclassical aggregate distribution theory. 
These propositions, it will be shown, are mathemati­
cal consequences of constant shares, and it will be 
argued that the puzzling uniformity of the empirical 
results is due in fact to this law of algebra and not 
to some mysterious law of production. In fact, in

4 F. Fisher (1971), p. 306.
5 Fisher (1971), p. 306.

order to emphasize the independence of this result 
from any laws of production, an illustration is pro­
vided in the form of the rather implausible data of 
the ‘‘Humbug” economy, for even these data are 
perfectly consistent with a Cobb-Douglas function 
having ‘‘constant returns to scale,” “neutral techni­
cal change,” and satisfying “marginal productivity 
rules,” so long as shares are constant.

II. Laws of Algebra

Let us begin by separating the aggregate data in 
any time period into output data (Q, the value of 
output), distribution data (W , tt, wages and profits, 
respectively), and input data (K , L, the index num­
bers for capital and labor, respectively). Then we 
can write the following aggregate identity for any 
time t:

Q ( t ) ^ W ( t ) + 7 T ( t )  (1)

Given any index numbers K( t ) ,  !,(.£), we can 
always write:

q(t) =  w(t )  + r ( t )  k ( t )  (2)

where q(t)  and k( t )  are the output-labor and capi­
tal-labor ratios, respectively, and w { t ) = W ( t ) /  
L( t ) ,  r(t )  = 7r ( t ) / K( t )  are the wage and profit 
rates, respectively. The above equation is therefore 
the fundamental identity relating output, distribu­
tion, and input data. Defining the share of profits 
in output as s, and the share of wages as 1 — s, we 
can differentiate identity 2 to arrive at identity 3 
(time derivatives are denoted by dots, and the time 
index, t, is dropped to simplify notation) :

q =  w +  rk -f- rk =  w(^— ^  -f- rk ^

+  r k ( 4)
7 w /  w \  rk /  r \  rk I  k \  
7 a ' W ' ^ ~ a ' r / ^ ~ a ' k '
Q
q q ' w  

noting that

rk w

we can write

q

k
~k (3)

where
22
— =  [ ( 1 — s) w/w  -f- s r / r ] . 
B
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It is important to note that all relationships so 
far are always true for any aggregate data at all. 
Suppose now we are faced with data which exhibit 
constant aggregate shares, so that s — ft. Then we 
can immediately integrate the identity (3) to get6

q — B(c0 k&), where B =-e f {B/B)dt, c0 =  constant
of integration. (4)

Equation (4) is strikingly reminiscent of a con­
stant returns to scale aggregate Cobb-Douglas pro­
duction function with a shift parameter B.  But in 
fact, it is not a production function at all, but merely 
an algebraic relationship which always holds for 
any output-input data Q, K, L, even data which 
could not conceivably come from any economy, so 
long as the distribution data exhibits a constant 
ratio. Furthermore, since the B /B  term in identity 
(3) is a weighted average of the rates of change of 
w and r, respectively, it seems empirically reason­
able to expect many measures of K, L  would give a 
capital-labor ratio k which is weakly correlated with 
B/B.  With measures for which the above is true, 
B / B  may be considered to be primarily a function 
of time, so that B will also be solely a function of 
time. Then we can write

q =  B( t ) [ c0 k ^  (5)

Q =  B ( t ) [ c 0 K P L ' - n .  ( S ' ) '

The above algebraic relationship has several inter­
esting properties. First, it is homogeneous to the 
first degree in K  and L. Second, since fi =  s =  
rk/q,  the partial derivatives dQ/dK,  SQ/dL  are 
equal to r, w, respectively. And third, the effect of 
time is “neutral,” as incorporated in the shift 
parameter B(t ) .  What we have, actually, is mathe­
matically identical to a constant returns to scale 
Cobb-Douglas production function having neutral 
technical change and satisfying marginal produc­
tivity “rules.” And yet, as we have seen, any produc­
tion data whatsoever can be presented as being 
‘‘generated” by such a function, so long as shares are 
constant and the measures of capital and labor such 
that k is uncorrelated with B/ B.  Therefore, pre­
cisely because (5') is a mathematical relationship, 
holding true for large classes of data associated with 
constant shares, it cannot be interpreted as a pro­
duction function, or any production relation at all. 
If anything, it is a distributive relation, and sheds 
little or no light on the underlying production rela­
tionships.7 In fact, since the constancy of shares has

6 In q — $B/ B dt  -f- /3 In k -f- c0, which gives us q =  
[„JB /B  <K] [ Cq k P ] .

7 I thank Professor Luigi Pasinetti for having pointed this
out in his comments on an earlier version of this paper.

been taken as an empirical datum throughout, equa­
tion (5') does not shed much light on any theory 
of distribution either.

I emphasized earlier that the theoretical basis of 
aggregate production function analysis was ex­
tremely weak. I t  would seem now that its apparent 
empirical strength is no strength at all, but merely 
a statistical reflection of an algebraic relationship.

III. Applications

I t  is obvious that one can apply equation (5') 
in many ways. Section A) below will re-examine 
Solow’s famous paper on measuring technical 
change. Section B) will present a numerical example 
to illustrate the generality of equation (5') and sec­
tion C) will extend the preceding analysis to cross- 
section studies.

A) Technical Change and the Aggregate Production 
Function: Solow (1957)

In what is considered a “seminal paper,”8 Robert 
Solow introduced in 1957 a novel method for mea­
suring the contribution of technical change to 
economic growth. Since that time several refine­
ments of Solow’s original calculations have been 
established, all aimed at providing better measures 
of labor and capital by taking account of education, 
vintages of machines, etc., but the basic approach 
has remained unchanged.9

Solow’s model is a familiar one. Equation (6) 
represents the assumed constant returns to scale ag­
gregate production function, with neutral technical 
change represented by the shift parameter A ( t ), 
while equation (7) states that “factors are paid 
their marginal products” (rewritten below in terms 
of the share of profits in output).10

q =  A ( t ) f ( k )  (6)

df k
-------=  s =  share of profits in output. ( 7 )
dk f

Solow’s main purpose was to isolate what I will 
call the “underlying” production function f (k)  by 
distinguishing between shifts of the production 
function (due to “ technical” change) and move­
ments along it (due to changes in the capital-labor 
ratio k).  To do this, he differentiates (6), and using 
(7) to substitute s for (j / f ) J ( k / k ), he arrives at

8 Solow (1957).
9 For a summary of subsequent refinements, see Nelson 

(1964).
10Note that f ( k ) = q / A ( t ) .  The marginal product of 

capital is dq/ dk ■= A( t )  [df /dk]  =  [q/ f ]  [df /dk] .  Setting 
this equal to r and rearranging gives (7), since s =  (r k ) / q .
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Equation (8) is derived from the assumptions of 
a constant returns to scale aggregate production 
function, with distribution determined by marginal 
productivity rules. Equation (3), derived earlier 
from an identity and therefore always true for any 
production and distribution behavior, is mathe­
matically identical to (8) above. It follows therefore 
that À /A  =  B /B  =  [(1 — s)w/w +  (s)r/r] ; that 
is, Solow’s measure of technical change is merely a 
weighted average of the growth rates of the wage 
w and rate of profit r.

Solow’s data provide him with a series for q, k, 
and s for the United States from 1909-1949. From 
this he calculates q/q  and k / k , and uses them in 
(8) to derive aperies for À/ A  ; since À/ A  appears 
uncorrelated with k, he concludes that technical 
change is essentially neutral, and by setting .<4(0) 
=  1, he is able to arrive at a series for A( t ) ,  the 
neutral technical change shift parameter. Finally, 
since (6) relates q, A( t ) ,  and the hitherto un­
specified “underlying” production function f ( k) ,  he 
can use the series for A(t )  to derive one for f (k) .  
Plotting f (k)  versus k, he gets a diagram with a 
noticeable curvature, and concludes that the data 
“give a distinct impression of diminishing returns.”11 
In fact, Solow finds that this “underlying” produc­
tion function is extremely well represented (with 
a correlation coefficient R =  .9996) by a Cobb- 
Douglas function:

In f [k)  =  —0.729 +  .353 In k. (9)

Given our preceding analysis in section II, it is 
not difficult to see why Solow’s results turn out so 
nicely. We know for instance that his data exhibit 
roughly constant shares, and that his measures for 
K, L  yield a residual À/ A  uncorrelated with k. From 
purely algebraic considerations, therefore, one would 
expect the data to be well-represented by the func­
tional form in (3), a form which is mathematically 
identical to a constant returns to scale Cobb-Douglas 
function, with neutral technical change and “mar­
ginal products equal to factor rewards.” In fact, the 
algebra indicates that Solow’s “underlying” produc­
tion function should be of the form

f ( k ) = c 0 kP - (10)

ft is of course the (roughly) constant share, and 
c0 is a constant of integration which depends only 
on the initial points q0, k0 of the datia.12 Thus, on

11 Solow, ibid, p. 320.
12 From (3), q =  B( t )  [c0 kP].  Solow identifies B( t )  =  

A( t ) ,  and since A 0 =  1, q0 =  c0kQP. Solow uses the

purely algebraic considerations one would expect 
the “underlying” production function to be charac­
terized by:

In f (k)  =  —0.725 +  .35 In (k).  (11)
This, of course, is virtually identical to Solow’s 

regression (equation (11)) as it should be, for it 
is a law of algebra, not a law of production !

B) The Humbug Production Function
It is possible to illustrate the generality of the 

preceding analysis by means of a numerical ex­
ample. Consider, for example, an economy with the 
output-input data illustrated in figure 1 below, and

Figure 1. —  the humbug economy

the same profit share s as the U. S. (Solow’s data, 
(1957)). Using this data, for q, k , and s, one can 
calculate q /q  and k /k , and use them to calculate 
A/A.  Plotting A/ A  on k gives a scatter diagram 
with no apparent correlation (left out here for rea­
sons of space; calculations appear in the appendix). 
Following Solow, one can set .<4(0) =  1, and thus 
arrive at a series for A ( t ), which is illustrated in 
figure 2. Finally, one can use the A( t )  to derive the 
“underlying” production function f ( k ) = q / A ( t ) ,  
which when plotted versus k in figure 3 also gives a 
distinct impression of “diminishing returns.” In  fact, 
a regression of f (k)  on k  gives In f ( k)  =  —0.453 
+  .34 In (k),  R  =  0.9964. Since the profit share for 
the years involved is roughly constant around 0.34, 
one has the remarkable conclusion that even the 
Humbug data can be extremely well represented by 
a Cobb-Douglas production function having con­
stant returns to scale, neutral technical progress, 
and marginal products equal to factor rewards.

years 1909-1942 in his regressions, and for these years s ss  
/? =  .35. Also from table 1, p. 315, q0 =  .623, k0 =  2.06, 
which gives In cQ —0.725.
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Figure 2. —  technical “regress”

A(t )

F igure 3. — underlying humbug production
FUNCTION

similar to a simple linear regression model y* =  
bxi +  uif with the term in brackets playing the part 
of the disturbance term Obviously, for any data 
in which the bracketed term is small and uncorre­
lated with the dependent variable dki/k iy the “best” 
fit will be a cross-section Cobb-Douglas production 
function with constant returns and factors paid their 
marginal products.

There are still other ways in which one may ex­
plain the apparent success of a Cobb-Douglas in 
cross-section studies, the best single reference being 
Phelps Brown’s (1957) critique. In a subsequent 
note, Simon and Levy (1963) show that any data 
having uniform wage and profit rates across the cross 
section can be closely approximated by the ubiqui­
tous Cobb-Douglas function having “correct” co­
efficients, even though the data reflect only mobility 
of labor and capital, not any specific production 
conditions. Once again, it would seem that the ap­
parent empirical success of the Cobb-Douglas func­
tion having “correct” coefficients is perfectly con­
sistent with wide varieties of data, and cannot be 
interpreted as supporting aggregate neoclassical 
production and distribution theory.

C) Cross-section Aggregate Production Functions 
The direct analogy to constant shares in time 

series is the case of uniform profit margins (profits 
per dollar sales) in cross-section data. Using the sub­
script i for the ith industry (or firm), and defining 
ft =  Si =  riki/qi as the uniform profit margin, we 
can rewrite equation (3) as

dq% P  dwi drt 1
(1 - 0 )----+  P ----- +  PL Wi f* J

dki
~k~'

( 1 2 )

Then, so long as the term in brackets is uncorre­
lated with dki/kiy the above equation is algebraically

IV. Summary and Conclusions

It has been conceded in recent literature that 
the theoretical basis of aggregate production func­
tions is, at best, weak. At the same time, the empiri­
cal basis has generally been presented as being 
strong. In particular, the striking dominance of the 
constant returns to scale Cobb-Douglas function, 
with estimated marginal products in close ^agreement 
with “factor rewards,” has often been taken as pro­
viding a good measure of support for production 
function analysis, in spite of the theory. The main 
purpose of this paper has been to show that the 
empirical results do not in fact have much to do 
with production conditions at all. Instead, it is 
demonstrated that when the distribution data 
(wages and profits) exhibit constant shares, there 
exist broad classes of production data (output, capi­
tal, and labor) which can always be related to each 
other through a functional form which is mathe­
matically identical to a Cobb-Douglas with con­
stant “returns to scale,” “neutral technical change,” 
and “marginal products equal to factor rewards.” 
Since the above is a mathematical consequence of 
constant shares, true even for very implausible pro­
duction data (such as the Humbug economy of sec­
tion III, B), it is argued that the so-called empirical 
strength of production function analysis is in reality 
nothing more than a statistical reflection of the 
(unexplained) constancy of income shares.
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APPENDIX  

Humbug Data

Year

Actual 
Share of 
Property 
Income

“Humbug” 
Output Per 

Worker

“Humbug” 
Capital Per 

Worker

s q ( t ) k i t ) q/q k / k À / A A ( t ) l i k )

1909 0.335 0.80 2.00 — 0.125 0.000 — 0.125 1.000 0.800
1910 . 0 .330 0.70 2.00 — 0.143 0.000 — 0.143 0.875 0.800
1911 0.335 0.60 2.00 + 0 .1 6 7 0.000 + 0 .1 6 7 0.750 0.800
1912 0.330 0.70 2.00 0.000 + 0 .0 5 0 — 0.017 0.875 0.800
1913 0.334 0.70 2.10 0.000 0.048 - — 0.016 0.860 0.814
1914 0.325 0.70 2.20 — 0.143 0.000 — 0.143 0.846 0.826
1915 0.344 0.60 2.20 + 0 .3 3 3 0.000 + 0 .3 3 3 0.725 0.828
1916 0.358 0.80 2.20 0.000 0.045 — 0.016 0.965 0.830
1917 0.370 0.80 2.30 — 0.250 0.000 — 0.250 0.948 0.843
1918 0.342 0.60 2.30 0.000 0.044 — 0.015 0.710 0.845
1919 0.354 0.60 2.40 0.000 0.042 — 0.015 0.700 0.857
1920 0.319 0.60 2.50 + 0 .1 6 7 0.000 + 0 .1 6 7 0.690 0.870
1921 0.369 0.70 2.50 + 0 .1 4 3 0.000 + 0 .1 4 3 0.805 0.870
1922 0.339 0.80 2.50 — 0.250 0.040 — 0.264 0.921 4 0.869
1923 0.337 0.60 2.60 + 0 .3 3 3 0.000 + 0 .3 3 3 0.678 0.885
1924 0.330 0.80 2.60 — 0.063 0.019 — 0.069 0.902 0.887
1925 0.336 0.75 2.65 — 0.067 0.019 — 0.073 0.840 0.893
1926 0.327 0 .70 2.70 + 0 .0 7 1 0.019 + 0 .0 6 5 0.780 0.897
1927 0.323 0.75 2.75 + 0 .0 6 7 0.018 + 0 .0 6 1 0.830 0.903
1928 0.338 0.80 2.80 — 0.250 0.000 — 0.250 0.880 0.908
1929 0.332 0.60 2.80 0.000 0.036 — 0.012 0.660 0.908
1930 0.347 0.60 2.90 0.000 0.052 — 0.018 0.652 0.920
1931 0.325 0.60 3.05 + 0 .1 6 7 0.000 + 0 .1 6 7 0.641 0.935
1932 0.397 0.70 3.05 0.000 — 0.049 + 0 .0 1 9 0.748 0.935
1933 0.362 0.70 2.90 + 0 .1 4 3 0.000 + 0 .1 4 3 0.764 0.916
1934 0.355 0.80 2.90 0.000 Ô.052 — 0.018 0.874 0.916*
1935 0.351 0.80 3:05 — 0.125 0.000 — 0.125 0.860 0.930
1936 0.357 0.70 3.05 0.143 0.033 + 0 .1 3 2 0.752 0.930
1937 0.34Q 0.80 3.15 0.250 0.000 — 0.250 0.852 0.940
1938 0.331 0.60 3.15 0.000 0.032 — 0.011 0.638 0 .940
1939 0.347 - 0 .60 3.25 0.000 0.031 — 0.011 0.633 0.948
1940 0.357 0.60 3.35 + 0 .3 3 3 0.000 + 0 .3 3 3 0 .626 0.960
1941 0.377 0.80 3.35 0.000 0.070 — 0.026 0.843 0.950
1942 0.356 0.80 3.60 0.000 — 0.042 + 0 .0 1 5 0.820 0.975
1943 0.342 0.80 3.45 — 0.250 0.000 — 0.250 0.832 0.964
1944 0.332 0.60 3.45 0.000 0.044 — 0.015 0.624 0.964
1945 0.314 0.60 3.60 + 0 .1 6 7 0.000 + 0 .1 6 7 0 .614 0.978
1946 0.312 0.70 3.60 0.000 — 0.014 + 0 .0 0 4 0.717 0.975
1947 0.327 0.70 3.55 — — — 0.721 0.970


