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Many economic time series exhibit dramatic breaks associated with events such as eco-

nomic recessions, financial panics, and currency crises. Such changes in regime may arise

from tipping points or other nonlinear dynamics and are core to some of the most impor-

tant questions in macroeconomics. This chapter surveys the literature for studying regime

changes and summarizes available methods. Section 1 introduces some of the basic tools

for analyzing such phenomena, using for illustration the move of an economy into and out of

recession. Section 2 focuses on empirical methods, providing a detailed overview of econo-

metric analysis of time series that are subject to changes in regime. Section 3 discusses

theoretical treatment of macroeconomic models with changes in regime and reviews appli-

cations in a number of areas of macroeconomics. Some brief concluding recommendations

for applied researchers are offered in Section 4.

1 Introduction: Economic recessions as changes in regime.

Figure 1 plots the U.S. unemployment rate since World War II. Shaded regions highlight a

feature of the data that is very familiar to macroeconomists— periodically the U.S. economy

enters an episode in which the unemployment rate rises quite rapidly. These shaded regions

correspond to periods that the Dating Committee of the National Bureau of Economic Re-

search chose to designate as economic recessions. But what exactly does such a designation

signify?

One view is that the statement that the economy has entered a recession does not have

any intrinsic objective meaning. According to this view, the economy is always subject
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to unanticipated shocks, some favorable, others unfavorable. A recession is then held

to be nothing more than a string of unusually bad shocks, with the bifurcation of the

observed sample into periods of “recession” and “expansion” an essentially arbitrary way of

summarizing the data.

Such a view is implicit in many theoretical models used in economics today insofar as it

is a necessary implication of the linearity we often assume in order to make our models more

tractable. But the convenience of linear models is not a good enough reason to assume

that no fundamental changes in economic dynamics occur when the economy goes into a

recession. For example, we understand reasonably well that in an expansion, GDP will

rise more quickly at some times than others depending on the pace of new technological

innovations. But what exactly would we mean by a negative technology shock? The

assumption that such events are just like technological improvements but with a negative

sign does not seem like the place we should start if we are trying to understand what really

happens during an economic downturn.

An alternative view is that on occasion some forces that are very different from the usual

technological growth take over to determine employment and output, resulting for example

when a simultaneous drop in product demand across different sectors and a rapid increase

in unemployed workers introduce new feedbacks of their own. The idea that there might be

a tipping point at which different economic dynamics begin to take over will be a recurrent

theme in this chapter.

Let’s begin with a very simple model with which we can explore some of the issues. We
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could represent the possibility that there are two distinct phases for the economy using the

random variable st. When st = 1, the economy is in expansion in period t and when st = 2,

the economy is in recession. Suppose that an observed variable yt such as GDP growth has

an average value of m1 > 0 when st = 1 and average value m2 < 0 when st = 2, as in

yt = mst + εt (1)

where εt ∼ i.i.d. N(0, σ2). Suppose that the transition between regimes is governed by a

Markov chain that is independent of εt,

Prob(st = j|st−1 = i, st−2 = k, ..., yt−1, yt−2, ...) = pij i, j = 1, 2. (2)

Note that if both st and εt were observed directly, (1)-(2) in fact could still be described

as a linear process. We can verify directly from (2) that1

E(mst|mst−1 ,mst−2 , ...) = a+ φmst−1 (3)

where a = p21m1 + p12m2 and φ = p11 − p21. In other words, mst follows an AR(1) process,

mst = a+ φmst−1 + vt. (4)

The innovation vt can take on only one of 4 possible values (depending on the realization of

st and st−1) but by virtue of (3), vt can be characterized as a martingale difference sequence.

Suppose however that we do not observe st and εt directly, but only have observations

of GDP up through date t − 1 (denoted Ωt−1 = {yt−1, yt−2, ...}) and want to forecast the

1 That is,
E(mst+1 |mst = m1) = p11m1 + p12m2 = p11m1 + a− p21m1 = a+ φm1

E(mst+1 |mst = m2) = p21m1 + p22m2 = a− p12m2 + p22m2 = a− (1− p11)m2 + (1− p21)m2 = a+ φm2.
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value of yt. Notice from equation (1) that yt is the sum of an AR(1) process (namely (4))

and a white noise process εt. Recall (e.g., Hamilton, 1994, p. 108) that the result could be

described as an ARMA(1,1) process. Thus the linear projection of GDP on its own lagged

values is given by

Ê(yt|Ωt−1) = a+ φyt−1 + θ[yt−1 − Ê(yt−1|Ωt−2)] (5)

where θ is a known function of φ, σ2, and the variance of vt (Hamilton, 1994, eq. [4.7.12]).

Note that we are using the notation Ê(yt|Ωt−1) to denote a linear projection (the forecast

that produces the smallest mean squared error among the class of all linear functions of Ωt−1)

to distinguish it from the conditional expectation E(yt|Ωt−1) (the forecast that produces the

smallest mean squared error among the class of all functions of Ωt−1).

Because of the discrete nature of st, the linear projection (5) would not yield the optimal

forecast of GDP. We can demonstrate this using the law of iterated expectations (White,

1984, p. 54):

E(yt|Ωt−1) =
2�

i=1

E(yt|st−1 = i,Ωt−1)Prob(st−1 = i|Ωt−1)

=
2�

i=1

(a+ φmi)Prob(st−1 = i|Ωt−1). (6)

Because a probability is necessarily between 0 and 1, the optimal inference Prob(st−1 =

i|Ωt−1) is necessarily a nonlinear function of Ωt−1. If data through t− 1 have persuaded us

that the economy was in expansion at that point, the optimal forecast is going to be close to

a+φm1, whereas if we become convinced the economy was in recession, the optimal forecast

approaches a+φm2. It is in this sense that we could characterize (1) as a nonlinear process
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in terms of its observable implications for GDP.

Calculation of the nonlinear inference Prob(st−1 = i|Ωt−1) is quite simple for this process.

We could start for t = 0 for example with the ergodic probabilities of the Markov chain:

Prob(s0 = 1|Ω0) =
p21

p21 + p12

Prob(s0 = 2|Ω0) =
p12

p21 + p12
.

Given a value for Prob(st−1 = i|Ωt−1), we can arrive at the value for Prob(st = j|Ωt) using

Bayes’s Law:

Prob(st = j|Ωt) =
Prob(st = j|Ωt−1)f(yt|st = j,Ωt−1)

f(yt|Ωt−1)
. (7)

Here f(yt|st = j,Ωt−1) is the N(mj , σ
2) density,

f(yt|st = j,Ωt−1) =
1√
2πσ

exp

�−(yt −mj)
2

2σ2

�
, (8)

Prob(st = j|Ωt−1) is the predicted regime given past observations,

Prob(st = j|Ωt−1) = p1jProb(st−1 = 1|Ωt−1) + p2jProb(st−1 = 2|Ωt−1), (9)

and f(yt|Ωt−1) is the predictive density for GDP:

f(yt|Ωt−1) =
2�

i=1

Prob(st = i|Ωt−1)f(yt|st = i,Ωt−1). (10)

Given a value for Prob(st−1 = i|Ωt−1), we can thus use (7) to calculate Prob(st = j|Ωt),

and proceed iteratively in this fashion through the data for t = 1, 2, ...T to calculate the

necessary magnitude for forming the optimal nonlinear forecast given in (6).
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Note that another by-product of this recursion is calculation in (10) of the predictive

density for the observed data. Thus one could estimate the vector of unknown popula-

tion parameters λ = (m1,m2, σ, p11, p22)
′ by maximizing the log likelihood function of the

observed sample of GDP growth rates,

L(λ) =
T�

t=1

log f(yt|Ωt−1;λ). (11)

If the objective is to form an optimal inference about when the economy was in a recession,

one can use the same principles to obtain an even better inference as more data accumulates.

For example, an inference using data observed through date t+ k about the regime at date

t is known as a k-period-ahead smoothed inference,

Prob(st = i|Ωt+k),

calculation of which will be explained in equation (22) below.

Though this is a trivially simple model, it seems to do a pretty good job at capturing

what is being described by the NBER’s business cycle chronology. If we select only those

quarters for which the NBER declared the U.S. economy to be in expansion, we calculate an

average annual growth rate of 4.5%, suggesting a value for the parameter m1 = 4.5. And we

observe that if the NBER determined the economy to be in expansion in quarter t, 95% of

the time it said the same thing in quarter t+1, consistent with a value of p11 = 0.95. These

values implied by the NBER chronology are summarized in column 3 of Table 1. On the

other hand, if we ignore the NBER dates altogether, but simply maximize the log likelihood

(11) of the observed GDP data alone, we end up with very similar estimates, as seen in

column 4.
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Moreover, even given the challenges of data revision, the one-quarter-ahead smoothed

probabilities have an excellent out-of-sample record at tracking the NBER dates. Figure 2

plots historical values for Prob(st = 2|Ωt+1, λ̂t+1) where only GDP data as it was actually

released as of date t+ 1 was used to estimate parameters and form the inference plotted for

date t. Values before the vertical line are “simulated real-time” inferences from Chauvet and

Hamilton (2006), that is, values calculated in 2005 using a separate historical real-time data

vintage for each date t shown. Values after the vertical line are true real-time out-of-sample

inferences as they have been published individually on www.econbrowser.com each quarter

since 2005 without revision.

One attractive feature of this approach is that the linearity of the model conditional on st

makes it almost as tractable as a fully linear model. For example, an optimal k-period-ahead

forecast of GDP growth based only on observed growth through date t can be calculated

immediately using (4),

E(yt+k|Ωt) = µ+ φk
2�

i=1

(mi − µ)Prob(st = i|Ωt) (12)

for µ = a/(1 − φ). Results like this make this model of changes in regime very convenient

to work with.

2 Econometric treatment of changes in regime.

This section discusses econometric inference for data that may be subject to changes in

regime, while Section 3 examines methods to incorporate changes in regime into theoretical

economic models.
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2.1 Multivariate or non-Gaussian processes.

Although the model in Section 1 was quite stylized, the same basic principles can be used to

investigate changes in regime in much richer settings. Suppose we have a vector of variables

yt observed at date t and hypothesize that the density of yt conditioned on its past history

Ωt−1 = {yt−1,yt−2, ...} depends on parameters θ some or all of which are different depending

on the regime st:

f(yt|st = i,Ωt−1) = f(yt|Ωt−1;θi) for i = 1, ..., N. (13)

In the example in Section 1, there were N = 2 possible regimes with θ1 = (m1, σ)
′, θ2 =

(m2, σ)
′, and f(yt|Ωt−1;θi) the N(mi, σ

2) density. But the same basic approach would work

for an n-dimensional vector autoregression in which some or all of the parameters change

with the regime,

yt = Φst,1yt−1 +Φst,2yt−2 + · · ·+Φst,ryt−r + cst + εt

= Φstxt−1 + εt (14)

εt|st,Ωt−1 ∼ N(0,Σst), (15)

a class of models discussed in detail in Krolzig (1997). Here xt−1 is an (nr + 1)× 1 vector

consisting of a constant term and r lags of y:

xt−1 = (y′t−1,y
′
t−2, ...,y

′
t−r, 1)

′.
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In this case the density of yt conditional on its own past values and the regime st taking the

value i would be

f(yt|st = i,Ωt−1) =
1

(2π)n/2|Σi|1/2
exp

�
−(1/2)(yt −Φixt−1)

′Σ−1
i (yt −Φixt−1)

�
. (16)

There is also no reason that a Gaussian density has to be used. For example, Dueker

(1997) proposed a model of stock returns in which the innovation comes from a Student t

distribution whose degrees of freedom parameter η changes with the regime.

2.2 Multiple regimes.

A convenient representation for a model with N > 2 regimes is obtained by collecting the

transition probabilities in a matrix P whose row j, column i element corresponds to pij (so

that columns of P sum to unity). We likewise summarize the regime at date t by an (N×1)

vector ξt whose ith element is unity when st = i and is zero otherwise— in other words, ξt

corresponds to column st of IN . Notice that E(ξt|st−1 = i) has the interpretation

E(ξt|st−1 = i) =






Prob(st = 1|st−1 = i)

...

Prob(st = N |st−1 = i)






=






pi1

...

piN






meaning

E(ξt|ξt−1) = Pξt−1

and

ξt = Pξt−1 + vt

9



for vt a discrete-valued martingale difference sequence whose elements always sum to zero.

Thus the Markov chain admits a VAR(1) representation, with k-period-ahead regime prob-

abilities conditional on the observed data Ωt given by





Prob(st+k = 1|Ωt)
...

Prob(st+k = N |Ωt)






= Pk






Prob(st = 1|Ωt)
...

Prob(st = N |Ωt)






. (17)

Calculation of the moments and discussion of stationarity conditions for general processes

subject to changes in regime can be found in Tjøstheim (1986), Yang (2000), Timmermann

(2000), and Francq and Zakoïan (2001).

Although most applications assume a relatively small number of regimes, Sims and Zha

(2006) used Bayesian prior information in a model with N as large as 10, while Calvet

and Fisher (2004) estimated a model with thousands of regimes by imposing a functional

restriction on the ways parameters vary across regimes.

2.3 Processes that depend on current and past regimes.

In the original model proposed by Hamilton (1989) for describing economic recessions, the

conditional density of GDP growth yt was presumed to depend not just on the current regime

but also on the r previous regimes:

yt = mst + φ1(yt−1 −mst−1) + φ2(yt−2 −mst−2) + · · ·+ φr(yt−r −mst−r) + εt. (18)

While at first glance this might not appear to be a special case of the general formulation

given in (13), this in fact is just a matter of representing (18) using the right notation.

Taking r = 1 for illustration, define

10



s∗t =






1 when st = 1 and st−1 = 1

2 when st = 2 and st−1 = 1

3 when st = 1 and st−1 = 2

4 when st = 2 and st−1 = 2

.

Then s∗t itself follows a 4-state Markov chain with transition matrix

P∗ =






p11 0 p11 0

p12 0 p12 0

0 p21 0 p21

0 p22 0 p22






and the model (18) can indeed be viewed as a special case of (13), with for example

f(yt|s∗t = 2,Ωt−1) =
1

(2πσ2)1/2
exp

�
− [yt −m2 − φ1(yt−1 −m1)]

2

2σ2

�
.

2.4 Inference about regimes and evaluating the likelihood for the

general case.

For any of the examples above we could collect the set of possible densities conditional on

one of N different possible regimes in an (N × 1) vector ηt whose ith element is f(yt|st =

i,Ωt−1;λ) for Ωt−1 = {yt−1,yt−2, ...,y1) and λ a vector consisting of all the unknown

population parameters. For example, for the Markov-switching vector autoregression the

ith element of ηt is given by (16) and λ is a vector collecting the unknown elements of

{Φ1, ...,ΦN ,Σ1, ...,ΣN ,P} for P the (N × N) matrix whose row j column i element is

Prob(st+1 = j|st = i) (so columns of P sum to unity). We likewise can define the (N × 1)
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vector ξ̂t|t whose ith element is the probability Prob(st = i|Ωt;λ). One goal is to take the

inference ξ̂t−1|t−1 and update it to calculate ξ̂t|t using the observation on yt. Hamilton (1994,

p. 692) showed that this can be accomplished by calculating

ξ̂t|t−1 = Pξ̂t−1|t−1

ξ̂t|t =
(ξ̂t|t−1 ⊙ ηt)
1′(ξ̂t|t−1 ⊙ ηt)

(19)

where 1 denotes an (N × 1) vector of ones and ⊙ denotes element-by-element vector multi-

plication.

If the Markov chain is known to be ergodic, we could begin the recursion for t = 1 by

setting ξ̂1|0 to the vector of unconditional probabilities, which as in Hamilton (1994, p. 684)

can be found from the (N + 1)th column of the matrix (A′A)−1A′ for

A
(N+1)×N

=





IN −P

1′




 . (20)

Alternative options are to treat the initial probabilities as separate parameters,






Prob(s1 = 1|Ω0)
...

Prob(s1 = N |Ω0)






=






ρ1

...

ρN






where ρi could reflect prior beliefs (e.g., ρ1 = 1 if the analyst knows the sample begins in

regime 1), complete ignorance (ρi = 1/N for i = 1, ...,N), or ρ could be a separate vector

of parameters also to be chosen by maximum likelihood. Any of the last three options

is particularly attractive if the EM algorithm described in Section 2.5 or Gibbs sampler in
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Section 2.8 are used, or if one wants to allow the possibility of a permanent regime shift

which would mean that the Markov chain is not ergodic.

In a generalization of (10) and (11), the log likelihood function for the observed data is

naturally calculated as a by-product of the above recursion:

L(λ) =�T
t=1 log f(yt|Ωt−1;λ) =

�T
t=1 log[1

′(ξ̂t|t−1 ⊙ ηt)]. (21)

From (17) the k-period-ahead forecast of the regime, Prob(st+k = j|Ωt;λ) is found from the

jth element of Pkξ̂t|t.

It’s also often of interest to calculate an inference about the regime at date t conditional

on the full set of all observations through the end of the sample T, known as the “smoothed

probability.” The smoothed Prob(st = i|ΩT ;λ) is obtained from the ith element of ξ̂t|T

which can be calculated as in Hamilton (1994, p. 694) by iterating backwards for t =

T − 1, T − 2, ..., 1 on

ξ̂t|T = ξ̂t|t ⊙ {P′[ξ̂t+1|T (÷) ξ̂t+1|t]} (22)

where (÷) denotes element-by-element division.

2.5 EM algorithm.

The unknown parameters λ could be estimated by maximizing the likelihood function (21)

using numerical search methods. Alternatively, Hamilton (1990) noted that the EM al-

gorithm is often a convenient method for finding the maximum of the likelihood function.

This algorithm is simplest if we treat the initial probabilities ξ̂1|0 as a vector of free para-

meters ρ rather than using ergodic probabilities from (20). This section describes how the
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EM algorithm would be implemented for the case of an unrestricted Markov-switching VAR

(14), in which case λ includes ρ along with the elements of {Φ1, ...,ΦN ,Σ1, ...,ΣN ,P}. The

EM algorithm is an iterative procedure for generating a sequence of estimates {λ̂(ℓ)} where

the algorithm guarantees that the log likelihood (21) evaluated at λ̂
(ℓ+1)

is greater than or

equal to that at λ̂
(ℓ)
. Iterating until convergence leads to a local maximum of the likelihood

function.

To calculate the value of λ̂
(ℓ+1)

we first use λ̂
(ℓ)

in equation (22) to evaluate the smoothed

probabilities Prob(st = i|ΩT ; λ̂
(ℓ)
) and also smoothed joint probabilities Prob(st = i, st+1 =

j|ΩT ; λ̂
(ℓ)
). The latter are obtained from the row i column j element of the (N×N) matrix2

{ξ̂t|t(λ̂
(ℓ)
)[ξ̂t+1|T (λ̂

(ℓ)
) (÷) (P̂(ℓ)ξ̂t|t(λ̂

(ℓ)
)]′} ⊙ P̂(ℓ)′. (23)

We then use these smoothed probabilities to generate a new estimate ρ̂(ℓ+1), whose ith

element is obtained from Prob(s1 = i|ΩT ; λ̂
(ℓ)
), along with a new estimate P̂(ℓ+1) whose row

j column i element is given by

p̂
(ℓ+1)
ij =

�T−1
t=1 Prob(st = i, st+1 = j|ΩT ; λ̂

(ℓ)
)

�T−1
t=1 Prob(st = i|ΩT ; λ̂

(ℓ)
)

.

Updated estimates of the VAR parameters for i = 1, ..., N are given by

Φ̂
(ℓ+1)
i =

��T
t=1 ytx

′
t−1Prob(st = i|ΩT ; λ̂

(ℓ)
)
���T

t=1 xt−1x
′
t−1Prob(st = i|ΩT ; λ̂

(ℓ)
)
�−1

(24)

2 The row i column j element of this matrix corresponds to

Prob(st = i|Ωt)
Prob(st+1 = j|ΩT )
Prob(st+1 = j|Ωt)

pij

which from equation [22.A.21] in Hamilton (1994) equals Prob(st = i, st+1 = j|ΩT ).
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Σ̂
(ℓ+1)
i =

�T
t=1(yt − Φ̂

(ℓ+1)
i xt−1)(yt − Φ̂

(ℓ+1)
i xt−1)

′Prob(st = i|ΩT ; λ̂
(ℓ)
)

�T
t=1 Prob(st = i|ΩT ; λ̂

(ℓ)
)

.

We thus simply iterate between calculating smoothed probabilities and OLS regressions of

yt on its lags weighted by those smoothed probabilities. The algorithm will converge to a

point that is at least a local maximum of the log likelihood (21) with respect to λ subject

to the constraints that ρ′1 = 1,1′P = 1′, all elements of ρ and P are nonnegative, and Σj

is positive semidefinite for j = 1, ..., N.

2.6 EM algorithm for restricted models.

Often we might want to use a more parsimonious representation to which the EM algorithm

is easily adapted. For example, suppose that we assume that there are no changes in regime

for the equations describing the first n1 variables in the system:

y1t = Axt−1 + ε1t (25)

y2t = Bstxt−1 + ε2t (26)

E










ε1t

ε2t






�

ε′1t ε′2t

�
��������
st





=






Σ11 Σ12,st

Σ21,st Σ22,st




 .

As in Hamilton (1994, p. 310) it is convenient to reparameterize the system by premultiplying

(25) by Σ21,stΣ
−1
11 and subtracting the result from (26) to obtain

y2t = Csty1t +Dstxt−1 + v2t (27)

whereCst = Σ21,stΣ
−1
11 ,Dst = Bst−Σ21,stΣ

−1
11A, v2t = ε2t−Σ21,stΣ

−1
11 ε1t, and E(v2tv

′
2t|st) =

Hst = Σ22,st−Σ21,stΣ
−1
11Σ12,st . Then the likelihood associated with the system (25) and (27)
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factors into a regime-switching component and a regime-independent component parameter-

ized by A,Σ11. In the absence of restrictions on Bst , Σ21,st , and Σ22,st, the values for A and

Σ11 do not restrict the likelihood for the regime-switching block, meaning full-information

maximum likelihood for the complete system can be implemented by maximizing the likeli-

hood separately for the two blocks. For the regime-independent block, the MLE is obtained

by simple OLS:

Â =
��T

t=1 y1tx
′
t−1

���T
t=1 xt−1x

′
t−1

�−1

Σ̂11 = T−1
�T

t=1(y1t − Âxt−1)(y1t − Âxt−1)
′.

The MLE for the regime-switching block can be found using the EM algorithm,

Ĝ
(ℓ+1)
i =

��T
t=1 y2tz

′
tp
(ℓ)
it

���T
t=1 ztz

′
tp
(ℓ)
it

�−1

Ĥ
(ℓ+1)
i =

��T
t=1(y2t − Ĝ

(ℓ+1)
i zt)(y2t − Ĝ

(ℓ+1)
i zt)

′p(ℓ)it

�

��T
t=1 p

(ℓ)
it

�

p
(ℓ)
it = Prob(st = i|ΩT ; λ̂

(ℓ)
)

with zt = (y′1t,x
′
t−1)

′ and Gj=

�

Cj Dj

�
. The MLE for the original parameterization is

then found simply by reversing the transformation that led to (27), for example Σ̂21,j =

ĈjΣ̂11 and B̂j = D̂j + Σ̂21,jΣ̂
−1
11 Â.

Alternatively, suppose we want to restrict the switching coefficients to apply only to a

subset x2,t−1 of the original regressors, as for example in a VAR in which only the intercept

(the last element of xt−1) is changing with regime,

yt = Ax1,t−1 +Bstx2,t−1 + εt (28)
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with E(εtε
′
t) = Σ. In this case the EM equations take the form3

�

Â(ℓ+1) B̂
(ℓ+1)
1 B̂

(ℓ+1)
2 · · · B̂

(ℓ+1)
N

�
= Syx(λ̂

(ℓ)
)S−1xx (λ̂

(ℓ)
) (29)

Syx(λ̂
(ℓ)
) =

�T
t=1 yt

�

x′1,t−1 x′2,t−1p
(ℓ)
1t x′2,t−1p

(ℓ)
2t · · · x′2,t−1p

(ℓ)
Nt

�

Sxx(λ̂
(ℓ)
) =

�T
t=1






x1,t−1x
′
1,t−1 x1,t−1x

′
2,t−1p

(ℓ)
1t x1,t−1x

′
2,t−1p

(ℓ)
2t · · · x1,t−1x

′
2,t−1p

(ℓ)
Nt

x2,t−1x
′
1,t−1p

(ℓ)
1t x2,t−1x

′
2,t−1p

(ℓ)
1t 0 · · · 0

x2,t−1x
′
1,t−1p

(ℓ)
2t 0 x2,t−1x

′
2,t−1p

(ℓ)
2t · · · 0

...
...

...
...

...

x2,t−1x
′
1,t−1p

(ℓ)
Nt 0 0 · · · x2,t−1x

′
2,t−1p

(ℓ)
Nt






Σ̂(ℓ+1) = T−1
�N

i=1

�T
t=1

�
yt − Â(ℓ+1)x1,t−1 − B̂

(ℓ+1)
i x2,t−1

� �
yt − Â(ℓ+1)x1,t−1 − B̂

(ℓ+1)
i x2,t−1

�′
p
(ℓ)
it .

(30)

2.7 Structural vector autoregressions and impulse-response func-

tions.

A Gaussian structural vector autoregression takes the form

Astyt = Bstxt−1 + ut

where xt−1 = (y′t−1,y
′
t−2, ...,y

′
t−r, 1)

′ and ut|st,Ωt−1 ∼ N(0,Dst). Here the elements of

ut are interpreted as different structural shocks which are identified by imposing certain

restrictions on Ai, Bi, and Di. For example, the common Cholesky identification assumes

that the structural equations are recursive, with Di diagonal and Ai lower triangular with

3 See the appendix for more details.
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ones along the diagonal. For an identified structure we could estimate parameters by setting

the ith element of ηt in (19) to

ηit =
1

(2π)n/2

�
|Ai|2

�
|Di|

exp
�
−(1/2)(Aiyt −Bixt−1)

′D−1
i (Aiyt −Bixt−1)

�

and then choosing {A1, ...,AN ,B1, ...,BN ,D1, ...,DN ,P} to maximize the likelihood (21).

A faster algorithm is likely to be obtained by first finding theMLE’s {Φ̂1, ..., Φ̂N , Σ̂1, ..., Σ̂N , P̂, ρ̂}

for the reduced form (14)-(15) using the EM algorithm in Section 2.5. If the model is just-

identified, we can just translate these into the implied structural parameters {Â1, ..., ÂN , B̂1, ...,

B̂N , D̂1, ..., D̂N , P̂, ρ̂}, while for an over-identified model we could find the values for the

structural parameters that are closest to the reduced form using minimum chi-square esti-

mation (e.g., Hamilton and Wu, 2012). For example, for the Cholesky formulation we would

just find the Cholesky factorization P̂iP̂
′
i = Σ̂i for each i. The row j column j element of D̂i

is then the square of the row j column j element of P̂i. Then Âi = D̂
1/2
i P̂−1i and B̂i = ÂiΦ̂i.

Users of structural vector autoregressions are often interested in structural impulse-

response functions, which in this case are functions of the regime at date t:

Hmj =
∂E(yt+m|st = j,Ωt)

∂u′t
=
∂E(yt+m|st = j,Ωt)

∂ε′t

∂εt
∂u′t

= ΨmjA
−1
j .

The nonorthogonalized or reduced-form IRF, Ψmj, can be found as follows. Suppose we

first condition not just on the regime j at date t but also on a particular regime j1 for date

t+ 1, j2 for t+ 2, and jm for t+m, and consider the value of

Ψ̃m,j,j1,...,jm =
∂E(yt+m|st = j, st+1 = j1, ..., st+m = jm,Ωt)

∂ε′t
.
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Karamé (2010) noted that this (n× n) matrix can be calculated from the recursion

Ψ̃m,j,j1,...,jm = Φ1,jmΨ̃m−1,j,j1,...,jm−1 +Φ2,jmΨ̃m−2,j,j1,...,jm−2 + · · ·+Φr,jmΨ̃m−r,j,j1,...,jm−r

for m = 1, 2, ... where Ψ̃0j = In and 0 = Ψ̃−1,. = Ψ̃−2,. = · · · . The object of interest is

found by integrating out the conditioning variables,

Ψmj =
�N

j1=1
· · ·�N

jm=1
Ψ̃m,j,j1,...,jmProb(st+1 = j1, ..., st+m = jm|st = j)

=
�N

j1=1
· · ·�N

jm=1
Ψ̃m,j,j1,...,jmpj,j1pj1,j2 · · · pjm−1,jm .

These magnitudes can either be calculated analytically for modestm andN or by simulation.

Such regime-specific impulse-response functions are of interest for questions such as

whether monetary policy (Lo and Piger, 2005) or fiscal policy (Auerbach and Gorodnichenko,

2012) have different effects on the economy during an expansion or recession.

2.8 Bayesian inference and the Gibbs sampler.

Bayesian methods offer another popular approach for econometric inference. The Bayesian

begins with prior beliefs about the unknown parameters λ which are represented using

a probability density f(λ) that associates a higher probability with values of λ that are

judged to be more plausible. The goal of inference is to revise these beliefs in the form of

a posterior density f(λ|ΩT ) based on the observed data ΩT = {y1, ...,yT}. Often the prior

distribution f (λ) is assumed to be taken from a particular parametric family known as a

natural conjugate distribution. These have the property that the prior and posterior are

from the same family, as would be the case for example if the prior beliefs were based on
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an earlier sample of data. Natural conjugates are helpful because they allow many of the

results to be obtained using known analytic solutions.

Again we will illustrate some of the main ideas using a Markov-switching vector autore-

gression:

yt = Φstxt−1 + εt

εt|st = i ∼ N(0,Σi)

Prob(s1 = i) = ρi

Prob(st = j|st−1 = i) = pij .

Prior distributions.

The Dirichlet distribution is the natural conjugate for the parameters that determine the

Markov transition probabilities. Suppose z = (z1, ..., zN)
′ is an (N×1) vector of nonnegative

random variables that sum to unity. The Dirichlet density with parameter α = (α1, ..., αN )
′

is given by

f(z) =
Γ(α1 + · · ·+ αN)

Γ(α1) · · ·Γ(αN)
zα1−11 · · · zαN−1N

for Γ(.) the gamma function, with the constant ensuring that the density integrates to unity

over the set of vectors z satisfying the specified conditions. The beta distribution is a special

case when N = 2, usually expressed as a function of the scalar z1 ∈ (0, 1),

f(z1) =
Γ(α1 + α2)

Γ(α1)Γ(α2)
zα1−11 (1− z1)

α2−1.

We then represent prior beliefs over the (N×1) vector of initial probabilities as (ρ1, ..., ρN ) ∼

D(α1, ..., αN) and those for transition probabilities as (pi1, ..., piN ) ∼ D(αi1, ..., αiN) for i =
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1, ...,N.

The natural conjugate for Σj,the innovation variance matrix for regime j, is provided by

the Wishart distribution. Let zi be independent (n×1) N(0,Λ−1) vectors and consider the

matrix W = z1z
′
1 + · · · + zηz

′
η for η > n− 1. This matrix is said to have an n-dimensional

Wishart distribution with η degrees of freedom and scale matrix Λ−1, whose density is

f(W) = c|Λ|η/2|W|(η−n−1)/2 exp [−(1/2) tr (WΛ)]

where tr(.) denotes the trace (sum of diagonal elements). For a univariate regression (n = 1)

this becomes Λ−1 times a χ2(η) variable, or equivalently a gamma distribution with mean

η/Λ and variance 2η/Λ2. The constant c is chosen so that the density integrates to unity

over the set of all positive definite symmetric matrices W (e.g., DeGroot, 1970, p. 57):

c =

�

2ηn/2πn(n−1)/4
n�

j=1

Γ

�
η + 1− j

2

� −1
.

The natural conjugate prior for Σ−1
j , the inverse of the innovation variance matrix in regime

j, takes the form of a Wishart distribution with ηj degrees of freedom and scale Λ−1
j :

f(Σ−1
j ) = c|Λj|ηj/2|Σj|−(ηj−n−1)/2 exp

�
−(1/2) tr

!
Σ−1
j Λj

"�
.

Prior information about the regression coefficients ϕj = vec(Φ′
j) for regime j can be

represented with a N(mj,Mj) distribution. The formulas are much simpler in the case of

no useful prior information about these coefficients (which can be viewed as the limit of the

inference as M−1
j → 0), and this limiting case will be used for the results presented here.
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Likelihood function and conditional posterior distributions.

Collect the parameters that characterize Markov probabilities in a set p = {ρj , p1j, ..., pNj}Nj=1,

those for variances in a set σ = {Σ1, ...,ΣN}, and VAR coefficients ϕ = {Φ1, ...,ΦN}. If

we were to condition on all of these parameters along with a particular numerical value for

the realization of the regime for every date S = {s1, ..., sT} the likelihood function of the

observed data ΩT = {y1, ...,yT} would be

f(ΩT |p, σ, ϕ,S) =
T#

t=1

1

(2π)n/2
|Σst|−1/2 exp[−(1/2)(yt −Φstxt−1)

′Σ−1
st (yt −Φstxt−1)]

=
T#

t=1

1

(2π)n/2

N�

j=1

δjt|Σj|−1/2 exp[−(1/2)(yt −Φjxt−1)
′Σ−1

j (yt −Φjxt−1)]

where δjt = 1 if st = j and is 0 otherwise. With independent priors the joint density of the

data, parameters, and regimes is then

f(ΩT , p, σ, ϕ,S) = f(ΩT |p, σ, ϕ,S)f(p)f(σ)f(ϕ)f(S|p) (31)

f(p) ∝
N#

j=1

ρ
αj−1
j p

α1j−1
1j · · · pαNj−1Nj

f(σ) ∝
N#

j=1

|Σj|−(ηj−n−1)/2 exp
�
−(1/2) tr

!
Σ−1
j Λj

"�

f(ϕ) ∝ 1

f(S|p) = ρs1ps1,s2ps2,s3 · · · psT−1,sT

where pst−1,st denotes the parameter pij when st−1 = i and st = j.

Let ∆(j) = {t ∈ 1, ..., T : δjt = 1} denote the set of dates for which the regime is j. From
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(31) the posterior distribution of Σj conditional on ΩT , p, ϕ,S is given by

f(Σ−1
j |ΩT , p, ϕ,S) ∝ |Σj|−(ηj−n−1)/2 exp[−(1/2) tr

!
Σ−1
j Λj

"
]×

#

t∈∆(j)

|Σj|−1/2 exp[−(1/2)(yt −Φjxt−1)
′Σ−1

j (yt −Φjxt−1)]

= |Σj|−(Tj+ηj−n−1)/2 exp[−(1/2)tr[Σ−1
j (Λj +Hj)] (32)

for Tj =
�T

t=1 δjt the number of dates characterized by regime j and Hj =
�T

t=1 δjt(yt −

Φjxt−1)(yt−Φjxt−1)
′ the sum of outer products of the residual vectors for those observations.

In other words, Σ−1
j |ΩT , p, ϕ,S has a Wishart distribution with Tj + ηj degrees of freedom

and scale matrix (Λj +Hj)
−1.

Likewise for Φ̂j =
��T

t=1 δjtytx
′
t−1

���T
t=1 δjtxt−1x

′
t−1

�−1
, that is for Φ̂j the OLS re-

gression coefficients using only observations for regime j, the posterior distribution of ϕj =

vec(Φ′
j) conditional on ΩT , p, σ,S is

f(ϕj|ΩT , p, σ,S) ∝ #

t∈∆(j)

exp[−(1/2)(yt −Φjxt−1)
′Σ−1

j (yt −Φjxt−1)]

=
#

t∈∆(j)

exp[−(1/2)(yt − Φ̂jxt−1 + Φ̂jxt−1 −Φjxt−1)
′Σ−1

j ×

(yt − Φ̂jxt−1 + Φ̂jxt−1 −Φjxt−1)]

∝ #

t∈∆(j)

exp[−(1/2)x′t−1(Φ̂j −Φj)
′Σ−1

j (Φ̂j −Φj)xt−1]

=
#

t∈∆(j)

exp{−(1/2)(ϕ̂j −ϕj)′[Σ−1
j ⊗ xt−1x

′
t−1](ϕ̂j −ϕj)}

= exp

$

−(1/2)(ϕj − ϕ̂j)′
�
Σj ⊗

��T
t=1 δjtxt−1x

′
t−1

�−1�−1
(ϕj − ϕ̂j)

%

establishing that ϕj|ΩT , p, σ,S ∼ N

�
ϕ̂j ,Σj ⊗

��T
t=1 δjtxt−1x

′
t−1

�−1�
for ϕ̂j = vec(Φ̂′

j).
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The conditional posterior distribution of ρ is found from

f(ρ|ΩT , ϕ, σ,S) ∝ ρa1−11 · · · ραN−1N ρst

which will be recognized as D(α1 + δ11, ..., αN + δN1), in other words, a Dirichlet dis-

tribution in which we have increased the parameter associated with the realized regime

for observation 1 by unity and kept all other parameters the same. We similarly have

(pi1, ..., piN)|ΩT , ϕ, σ,S ∼ D(αi1 + Ti1, ...., αiN + TiN) for Tij =
�T

t=2 δi,t−1δjt the number of

times that regime i is followed by j in the given sequence S.

Gibbs sampler.

The idea behind the Gibbs sampler is to take advantage of the above known conditional

distributions to generate a sequence of random variables whose unconditional distribution

will turn out to be the object we’re interested in. Suppose that as the result of a previous

iteration ℓ we had generated particular numerical values for ϕ, σ, p,S. We could for example

begin iteration ℓ = 1 with arbitrary initial guesses for the parameters along with a possible re-

alization of the regime for each date. Given the numbers from iteration ℓ, we could generate

Σ
(ℓ+1)
j from expression (32), namely, Σ

(ℓ+1)
j is the inverse of a draw from a Wishart distribu-

tion with T
(ℓ)
j +ηj degrees of freedom and scale matrix (Λj+H

(ℓ)
j )−1, where T

(ℓ)
j =

�T
t=1 δ

(ℓ)
jt is

a simple count of the number of elements in {s(ℓ)1 , ..., s
(ℓ)
T } that take the value j andH

(ℓ)
j is the

sum of the residual outer products
�T

t=1 δ
(ℓ)
jt (yt−Φ

(ℓ)
j xt−1)(yt−Φ

(ℓ)
j xt−1)

′ for those T
(ℓ)
j ob-

servations. Doing so for each j = 1, ..., N gives us the new σ(ℓ+1). We get a new value for the

VAR coefficients by generating ϕ
(ℓ+1)
j ∼ N

�
ϕ̂
(ℓ+1)
j ,Σ

(ℓ+1)
j ⊗

��T
t=1 δ

(ℓ)
jt xt−1x

′
t−1

�−1�
where

ϕ̂
(ℓ+1)
j = vec

�
Φ̂
(ℓ+1)′
j

�
is obtained from OLS regression on these T

(ℓ)
j observations: Φ̂

(ℓ+1)
j =
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��T
t=1 δ

(ℓ)
jt ytx

′
t−1

���T
t=1 δ

(ℓ)
jt xt−1x

′
t−1

�−1
. New initial probabilities (ρ

(ℓ+1)
1 , ..., ρ

(ℓ+1)
N ) are gen-

erated from D(α1 + δ
(ℓ)
11 , ..., αN + δ

(ℓ)
N1) and new Markov probabilities (p

(ℓ+1)
i1 , ..., p

(ℓ+1)
iN ) from

D(αi1 + T
(ℓ)
i1 , ...., αiN + T

(ℓ)
iN ) for T

(ℓ)
ij the number of times s

(ℓ)
t = i is followed by s

(ℓ)
t+1 = j

within the particular realization (s
(ℓ)
1 , ..., s

(ℓ)
T ).

Finally, we can get a new realization (s
(ℓ+1)
1 , ..., s

(ℓ+1)
T ) as a draw from the conditional

posterior f(S|ΩT , p(ℓ+1), σ(ℓ+1), ϕ(ℓ+1)) by iterating backwards on a variant of the smoothing

algorithm in Section 2.4. Specifically, given the values (p(ℓ+1), σ(ℓ+1), ϕ(ℓ+1)) we can iterate

on (19) for t = 1, ..., T to calculate the (N × 1) vector {ξ̂(ℓ+1)t|t }Tt=1 whose jth element is

Prob(st = j|Ωt, p(ℓ+1), σ(ℓ+1), ϕ(ℓ+1)). To generate s
(ℓ+1)
T , we first generate a U(0, 1) variate.

If this is smaller than the calculated Prob(sT = 1|ΩT , p(ℓ+1), σ(ℓ+1), ϕ(ℓ+1)), we set s
(ℓ+1)
T = 1.

If the uniform variable turns out to be between Prob(sT = 1|ΩT , p(ℓ+1), σ(ℓ+1), ϕ(ℓ+1)) and

the sum Prob(sT = 1|ΩT , p(ℓ+1), σ(ℓ+1), ϕ(ℓ+1))+ Prob(sT = 2|ΩT , p(ℓ+1), σ(ℓ+1), ϕ(ℓ+1)), we set

s(ℓ+1)T = 2, and so on. After we have generated a particular value for s(ℓ+1)T we can use (23)

to calculate the probability

Prob(sT−1 = i|sT = s
(ℓ+1)
T ,ΩT , p

(ℓ+1), σ(ℓ+1), ϕ(ℓ+1)) =

Prob(sT−1 = i, sT = s
(ℓ+1)
T |ΩT , p(ℓ+1), σ(ℓ+1), ϕ(ℓ+1))

Prob(sT = s
(ℓ+1)
T |ΩT , p(ℓ+1), σ(ℓ+1), ϕ(ℓ+1))

with which we generate a draw s
(ℓ+1)
T−1 . Iterating backwards in this manner gives us the full

sequence S(ℓ+1).

We now have a complete new set p(ℓ+1), σ(ℓ+1), ϕ(ℓ+1),S(ℓ+1), from which we can then

generate values for ℓ + 2, ℓ + 3, and so on. The idea behind the Gibbs sampler (e.g.,

Albert and Chib, 1993) is that the sequence corresponds to a Markov chain whose ergodic

25



distribution under general conditions is the true posterior distribution f(p, σ, ϕ,S|ΩT ). The

proposal is then to discard the first say 106 draws and retain the next 106 draws as a sample

from the posterior distribution.

One can also adapt approaches like those in Section 2.6 to apply the Gibbs sampler to

restricted models. For example, if regime switching is confined to a subset of the equations,

we can use the parameterization (27) and perform inference on the regime-switching subset

independently from the rest of the system.

Although very convenient for many applications, one caution to be aware of in applying

the Gibbs sampler is the role of label switching. Strategies for dealing with this are discussed

by Celeux, Hurn and Robert (2000), Frühwirth-Schnatter (2001), and Geweke (2007).

2.9 Time-varying transition probabilities.

While the calculations above assumed that regimes are characterized by an exogenous

Markov chain, this is easily generalized. We could replace (2) with

Prob(st = j|st−1 = i, st−2 = k, ...,Ωt−1) = pij(xt−1;λ) i, j = 1, ...,N (33)

where xt−1 is a subset of Ωt−1 or other observed variables on which one is willing to condition

and pij(xt−1;λ) is a specified parametric function. The generalization of (9) then becomes

Prob(st = j|Ωt−1) =
N�

i=1

pij(xt−1;λ)Prob(st−1 = i|Ωt−1).

where the sequence Prob(st = i|Ωt) can still be calculated iteratively as in (7),

Prob(st = j|Ωt) =
Prob(st = j|Ωt−1)f(yt|Ωt−1;θj)

f(yt|Ωt−1)
(34)
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with the predictive density in the denominator now

f(yt|Ωt−1) =
N�

i=1

Prob(st = i|Ωt−1)f(yt|Ωt−1;θi). (35)

Diebold, Lee and Weinbach (1994) showed how the EM algorithm works in such a setting,

while Filardo and Gordon (1998) developed a Gibbs sampler. Other interesting applications

with time-varying transition probabilities include Filardo (1994) and Peria (2002).

2.10 Latent-variable models with changes in regime.

A more involved case that cannot be handled using the above devices is when the conditional

density of yt depends on the full history of regimes (st, st−1, ..., s1) through date t. One

important case in which this arises is when a process moving in and out of recession phase is

proposed as an unobserved latent variable influencing an (n×1) vector of observed variables

yt. For example, Chauvet (1998) specified a process for an unobserved scalar business-cycle

factor Ft characterized by

Ft = αst + φFt−1 + ηt

which influences the observed yt according to

yt = ψFt + qt

for ψ an (n × 1) vector of factor loadings and elements of qt presumed to follow separate

autoregressions. This can be viewed as a state-space model with regime-dependent para-

meters in which the conditional density (13) turns out to depend on the complete history

(st, st−1, ..., s1).
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One approach for handling such models is an approximation to the log likelihood and

optimal inference developed by Kim (1994). Chauvet and Hamilton (2006) and Chauvet

and Piger (2008) demonstrated the real-time usefulness of this approach for recognizing U.S.

recessions with yt a (4× 1) vector of monthly indicators of sales, income, employment and

industrial production, while Camacho, Perez-Quiros and Poncela (2014) have had success

using a more detailed model for the Euro area.

The Gibbs sampler offers a particularly convenient approach for this class of models. We

simply add the unobserved sequence of factors {F1, ..., FT} as another random block to be

sampled from along with p, σ, ϕ, and S. Conditional on {F1, ..., FT}, draws for those other

blocks can be performed exactly as in Section 2.8, while draws for {F1, ..., FT} conditional on

the regimes and other parameters can be calculated using well-known algorithms associated

with the Kalman filter; see Kim and Nelson (1999a) for details.

2.11 Selecting the number of regimes.

Often one would want to test the null hypothesis that there are N regimes against the

alternative of N + 1, and in particular to test the null hypothesis that there are no changes

in regime at all (H0 : N = 1). A natural idea would be to compare the values achieved for

the log likelihood (21) for N and N+1. Unfortunately, the likelihood ratio does not have the

usual asymptotic χ2 distribution because under the null hypothesis, some of the parameters

of the model become unidentified. For example, if one thought of the null hypothesis

in (1) as m1 = m2, when the null is true the maximum likelihood estimates p̂11 and p̂22

do not converge to any population values. Hansen (1992) and Garcia (1998) examined

28



the distribution of the likelihood ratio statistic in this setting, though implementing their

procedures can be quite involved if the model is at all complicated. Cho and White (2007)

and Carter and Steigerwald (2012, 2013) suggested quasi-likelihood ratio tests that ignore

the Markov property of st. For discussion of some of the subtleties and possible solutions for

the case of i.i.d. regime changes see Hall and Stewart (2005) and Chen and Li (2009).

An alternative is to calculate instead general measures that trade off the fit of the like-

lihood against the number of parameters estimated. Popular methods such as Schwarz’s

(1978) Bayesian criterion rely for their asymptotic justification on the same regularity con-

ditions whose failure causes the likelihood ratio statistic to have a nonstandard distribution.

But Smith, Naik, and Tsai (2006) developed a simple test that can be used to select the

number of regimes for a Markov-switching regression,

yt = x′tβst + σstεt (36)

where εt ∼ N(0, 1) and st follows an N -state Markov chain. The authors proposed to

estimate the parameter vector λ = (β′1, ...,β
′
N , σ1, ..., σN , pij,i=1,...,N ;j=1,..,N−1)

′ by maximum

likelihood for each possible choice of N and calculate

T̂i =
�T

t=1 Prob(st = i|ΩT ; λ̂MLE) for i = 1, ..., N

using the full-sample smoothed probabilities. They suggested choosing the value of N for

which

MSC = −2L(λ̂MLE)+
�N

i=1

T̂i(T̂i +Nk)

T̂i −Nk − 2
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is smallest, where k is the number of elements in the regression vector β. Other alternatives

are to use Bayesian methods to find the value of N that leads to the largest value for the

marginal likelihood (Chib, 1998) or the highest Bayes factor (Koop and Potter, 1999).

Another promising test of the null hypothesis of no change in regime was developed by

Carrasco, Hu, and Ploberger (2014). Let ℓt = log f(yt|Ωt−1;λ) be the log of the predictive

density of the tth observation under the null hypothesis of no switching. For the Markov-

switching regression (36), λ would correspond to the fixed-regime regression coefficients and

variance (β′, σ2)′:

ℓt = −(1/2) log(2πσ2)−
(yt − x′tβ)

2

2σ2
.

Define ht to be the derivative of the log density with respect to the parameter vector,

ht =
∂ℓt
∂λ

����
λ=λ̂0

where λ̂0 denotes the MLE under the null hypothesis of no change in regime. For example,

ht =






(yt−x′tβ̂)xt
σ̂2

− 1
2σ̂2

+ (yt−x′tβ̂)
2

2σ̂4






where β̂ =
��T

t=1 xtx
′
t

�−1 ��T
t=1 xtyt

�
and σ̂2 = T−1

�T
t=1 (yt − x′tβ̂)

2
. To implement the

Carrasco, Hu, and Ploberger (2014) test of the null hypothesis of no change in regime

against the alternative that the first element of β switches according to a Markov chain, let

ℓ
(1)
t denote the first element of ht and calculate

ℓ
(2)
t =

∂2ℓt

∂λ21

����
λ=λ̂0

γt(ρ) = ℓ
(2)
t +

�
ℓ
(1)
t

�2
+ 2

�
s<t ρ

t−sℓ
(1)
t ℓ(1)s
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where ρ is an unknown parameter characterizing the persistence of the Markov chain. We

then regress (1/2)γt(ρ) on ht, save the residuals ε̂t(ρ), and calculate

C(ρ) =
1

2



max





0,

�T
t=1 γt(ρ)

2
��T

t=1[ε̂t(ρ)]
2










2

.

We then find the value ρ∗ that maximizes C(ρ) over some range (e.g., ρ ∈ [0.2, 0.8]) and

bootstrap to see if C(ρ∗) is statistically significant. This is done by generating data with no

changes in regime using the MLE λ = λ̂0 and calculating C(ρ∗) on each generated sample.

Another option is to conduct generic tests developed by Hamilton (1996) of the hypothesis

that anN -regime model accurately describes the data. For example, if the model is correctly

specified, the derivative of the log of the predictive density with respect to any element of

the parameter vector,

∂ log p(yt|Ωt−1;λ)
∂λi

����
λ=λ̂MLE

,

should be impossible for predict from its own lagged values, a hypothesis that can be tested

using simple regressions.

2.12 Deterministic breaks.

Another common approach is to treat the changes in regime as deterministic rather than

random. If we wanted to test the null hypothesis of constant coefficients against the alter-

native that a certain subset of the coefficients of a regression switched at fixed known dates

t1, t2, ..., tN , we could do this easily enough using a standard F test (see for example Fisher,

1970). If we do not know the dates, we could calculate the value of the F statistic for every

set of allowable N partitions, efficient algorithms for which have been described by Bai and
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Perron (2003) and Doan (2012), with critical values for interpreting the supremum of the

F statistics provided by Bai and Perron (1998). Bai and Perron (1998) also described a

sequential procedure with which one could first test the null hypothesis of no breaks against

the alternative of N = 1 break, and then test N = 1 against N = 2, and so on.

Although simpler to deal with econometrically, deterministic structural breaks have the

drawback that they are difficult to incorporate in a sensible way into models based on rational

decision makers. Neither the assumption that people knew perfectly that the change was

coming years in advance, nor the assumption that they were certain that nothing would

ever change (when in the event the change did indeed appear) is very appealing. There is

further the practical issue of how users of such econometric models are supposed to form

their own future forecasts. Pesaran and Timmermann (2007) suggested estimating models

over windows of limited subsamples, watching the data for an indication that it is time

to switch to using a new model. Another drawback of interpreting structural breaks as

deterministic events is that such approaches make no use of the fact that regimes such as

business downturns may be a recurrent event.

2.13 Chib’s multiple change-point model.

Chib (1998) offered a way to interpret multiple change-point models that gets around some

of the awkward features of deterministic structural breaks. Chib’s model assumes that

when the process is in regime i the conditional density of the data is governed by parameter

vector θi as in (13). Chib assumed that the process begins at date 1 in regime st = 1

and parameter vector θ1, and will stay there the next period with probability p11. With
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probability 1 − p11 we get a new value θ2, drawn perhaps from a N(θ1,Σ) distribution.

Conditional on knowing that there were N such breaks, this could be viewed as a special

case of an N -state Markov-switching model with transition probability matrix taking the

form

P =






p11 0 0 · · · 0 0

1− p11 p22 0 · · · 0 0

0 1− p22 p33 · · · 0 0

...
...

... · · · ...
...

0 0 0 · · · pN−1,N−1 0

0 0 0 · · · 1− pN−1,N−1 1






.

The total number of regime changes N could then be selected using one of the methods

discussed above.

Again it’s not clear how to form out-of-sample forecasts with this specification. Pe-

saran, Pettenuzzo, and Timmermann (2006) proposed embedding Chib’s model within a

hierarchical prior with which one could forecast future changes in regime based on the size

and duration of past breaks.

2.14 Smooth transition models.

Another econometric approach to changes in regime is the smooth transition regression model

(Teräsvirta, 2004):

yt =
exp[−γ(zt−1 − c)]

1 + exp[−γ(zt−1 − c)]
x′t−1β1 +

1

1 + exp[−γ(zt−1 − c)]
x′t−1β2 + ut. (37)
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Here the scalar zt−1 could be one of the elements of xt−1 or some known function of xt−1.

For γ > 0, as zt−1 → −∞, the regression coefficients go to β1, while when zt−1 → ∞, the

regression coefficients approach β2. The parameter γ governs how quickly the coefficients

transition as zt−1 crosses the threshold c.

If xt−1 = (yt−1, yt−2, ..., yt−r)
′, this is Teräsvirta’s (1994) smooth-transition autoregres-

sion, for which typically zt−1 = yt−d for some lag d. More generally, given a data-generating

process for xt, (37) is a fully specified time-series process for which forecasts at any horizon

can be calculated by simulation. One important challenge is how to choose the lag d or

more generally the switching variable zt−1. Although in some settings the forecast might be

similar to that coming from (6), the weights Prob(st−1 = i|Ωt−1) in the latter would be a

function of the entire history {yt−1, yt−2, ..., y1} rather than any single value.

3 Economic theory and changes in regime.

The previous section discussed econometric issues associated with analyzing series subject

to changes in regime. This section reviews how these features can appear in theoretical

models of the economy.

3.1 Closed-form solution of DSGE’s and asset-pricing implica-

tions.

In some settings it is possible to find exact analytical solutions for a full dynamic stochastic

general equilibrium model subject to changes in regime. A standard first-order condition
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in many macro models holds that

U ′(Ct) = βEt[U
′(Ct+1)(1 + rj,t+1)] (38)

where Ct denotes consumption of a representative consumer, β a time-discount rate, and

rj,t+1 the real return on asset j between t and t + 1. Lucas (1978) proposed a particularly

simple setting in which aggregate output comes solely from nonreproducible assets (some-

times thought of as fruit coming from trees) for which equilibrium turns out to require that

Ct equals the aggregate real dividend Dt paid on equities (or the annual crop of fruit). If

the utility function exhibits constant relative risk aversion (U(C) = (1 + γ)−1C(1+γ), the

aggregate equilibrium real stock price must satisfy

Pt = D−γ
t

∞�

k=1

βkEtD
(1+γ)
t+k .

Since the dividend process {Dt+k} is exogenous in this model, one could simply assume that

the change in the log of Dt is characterized by a process such as (1). Cecchetti, Lam and

Mark (1990) used calculations related to those in (12) to find the closed-form solution for

the general-equilibrium stock price,

Pt = ρstDt,

where the values of ρ1 and ρ2 are given in equations (11) and (12) in their paper.

Lucas’s assumption of an exogenous consumption and dividend process is obviously quite

restrictive. Nevertheless, asset-pricing relations such as (38) have to hold regardless of

how we close the rest of the model. We can always use (38) or other basic asset-pricing

conditions along with an assumed process for returns to find the implications of changes
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in regime for financial variables in more general settings. There is a very large literature

investigating these issues, covering topics such as portfolio allocation (Ang and Bekaert,

2002a; Guidolin and Timmermann, 2008), financial implications of rare-event risk (Evans,

1996; Barro, 2006), option pricing (Elliott, Chan, and Siu 2005), and the term structure of

interest rates (Bekaert, Hodrick, and Marshall, 2001; Ang and Bekaert, 2002b; Bansal and

Zhou, 2002). For a survey of this literature see Ang and Timmermann (2012).

3.2 Approximating the solution to DSGE’s using perturbation

methods.

First-order conditions for a much broader class of dynamic stochastic general equilibrium

models with Markov regime-switching take the form

Eta(yt+1,yt,xt,xt−1,εt+1, εt,θst+1 ,θst) = 0. (39)

Here a(.) is an [(ny + nx) × 1] vector-valued function, yt an (ny × 1) vector of control

variables (also sometimes referred to as endogenous jump variables), xt an (nx × 1) vector

of predetermined endogenous or exogenous variables, εt an (nε × 1) vector of innovations

to those elements of xt that are exogenous to the model, and st follows an N-state Markov

chain. The example considered in the previous subsection is a special case of such a system
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with ny = nx = 1, yt = Pt/Dt, xt = ln(Dt/Dt−1), θst = mst , and
4

a(yt+1, yt, xt, xt−1, εt+1, εt,mst+1 ,mst) =



β exp[(1 + γ)(mst+1 + εt+1)][(yt+1 + 1)/yt]− 1

xt −mst − εt




 .

For that example we were able to find closed-form solutions of the form

yt = ρst(xt−1, εt)

xt = hst(xt−1,εt),

namely yt = ρst and xt = mst + εt.

For more complicated models, solutions cannot be found analytically but can be approx-

imated using the partition perturbation method developed by Foerster, et al. (forthcom-

ing). Their method generalizes the now-standard perturbation methods of Schmitt-Grohe

and Uribe (2004) for finding linear and higher-order approximations to the solutions to

DSGE’s with no regime switching. Foerster, et al.’s idea is to approximate the solutions

ρj(.) and hj(.) in a neighborhood around the deterministic steady-state values satisfying

a(y∗,y∗,x∗,x∗,0,0,θ∗,θ∗) = 0 where θ∗ is the unconditional expectation of θst calculated

from the ergodic probabilities of the Markov chain,

θ∗ =
N�

j=1

θjProb(st = j).

4 Notice (38) can be written

Dγt = βEt

�
Dγt+1

Pt+1 +Dt+1
Pt

�

1 = βEt

��
Dt+1
Dt

�γ �
(Pt+1/Dt+1) + 1

Pt/Dt

��
Dt+1
Dt

��
.
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For the Lucas tree example from the previous subsection, m∗ = (m1p21+m2p12)/(p12+ p21).

We then think of a sequence of economies indexed by a continuous scalar χ such that their

behavior as χ → 0 approaches the steady state, while the value at χ = 1 is exactly that

implied by (39):

yt = ρst(xt−1, εt, χ) (40)

xt = hst(xt−1, εt, χ). (41)

As χ → 0, the randomness coming from εt is suppressed, and it turns out to be necessary

to do the same thing for any elements of θ that influence the steady state in order to have

some fixed point around which to calculate the approximation. For elements in θst that may

change with regime but do not matter for the steady state, Foerster, et al. (forthcoming)

showed that it is not necessary to shrink by χ in order to approximate the dynamic solution.

The authors thus specified

θ(st, χ) =





θA∗ + χ(θAst − θ

A∗)

θBst






where θAst denotes the subset of elements of θst that influence the steady state. The economy

characterized by a particular value of χ thus needs to satisfy

0 =

&
N�

j=1

pst,ja[ρj(xt, χεt+1, χ),yt,xt,xt−1, χεt+1,εt,θ(j, χ),θ(st, χ)]dF (εt+1) (42)

where F (εt+1) denotes the cumulative distribution function for εt+1. Note (42) is satisfied

by construction when evaluated at yt = y∗, xt = xt−1 = x∗, εt = 0, χ = 0.
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We next substitute (40) and (41) into (42) to arrive at a system of N(ny +nx) equations

of the form

Qst(xt−1, εt, χ) = 0 st = 1, ..., N

which have to hold for all xt−1, εt, and χ. Taking derivatives with respect to xt−1 and

evaluating at xt−1 = x∗, εt = 0, and χ = 0 (that is, using a first-order Taylor approximation

around the steady state) yields a system of N(ny + nx)nx quadratic polynomial equations

in the N(ny + nx)nx unknowns corresponding to elements of the matrices

Rx
j

(ny×nx)

=
∂ρj(xt−1,εt, χ)

∂x′t−1

����
xt−1=x∗,εt=0,χ=0

j = 1, ..., N

Hx
j

(nx×nx)

=
∂hj(xt−1, εt, χ)

∂x′t−1

����
xt−1=x∗,εt=0,χ=0

j = 1, ...,N.

The authors proposed an algorithm for finding the solution to this system of equations, that

is, values for the above sets of matrices. Given these, other terms in the first-order Taylor

approximation to (42) produce a system of N(ny+nx)nε equations that are linear in known

parameters and the unknown elements of

Rε
j

(ny×nε)

=
∂ρj(xt−1, εt, χ)

∂ε′t

����
xt−1=x∗,εt=0,χ=0

j = 1, ..., N

Hε
j

(nx×nε)

=
∂hj(xt−1, εt, χ)

∂ε′t

����
xt−1=x∗,εt=0,χ=0

j = 1, ..., N,

from whichRε
j andH

ε
j are readily calculated. Another system ofN(ny+nx) linear equations

yields

R
χ
j

(ny×1)

=
∂ρj(xt−1, εt, χ)

∂χ

����
xt−1=x∗,εt=0,χ=0

j = 1, ..., N

H
χ
j

(nx×1)

=
∂hj(xt−1, εt, χ)

∂χ

����
xt−1=x∗,εt=0,χ=0

j = 1, ..., N.
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The approximation to the solution to the regime-switching DSGE is then

yt = y∗ +Rx
st(xt−1 − x∗) +Rε

stεt +Rχ
st

xt = x∗ +Hx
st(xt−1 − x∗) +Hε

stεt +Hχ
st .

One could then go a step further if desired, taking a second-order Taylor approximation

to (42). Once the first step (the linear approximation) has been completed, the second

step (quadratic approximation) is actually easier to calculate numerically than the first step

was, because all the second-step equations turn out to be linear in the remaining unknown

magnitudes.

Lind (2014) developed an extension of this approach that could be used to form approx-

imations to any model characterized by dramatic nonlinearities, even if regime-switching in

the form of (39) is not part of the maintained structure. For example, the economic relations

may change significantly when interest rates are at the zero lower bound. Lind’s idea is to

approximate the behavior of a nonlinear model over a set of discrete regions using relations

that are linear (or possibly higher order polynomials) over individual regions, from which

one can then use many of the tools discussed above for economic and econometric analysis.

3.3 Linear rational expectations models with changes in regime.

Economic researchers often use a linear special case of (39) which in the absence of regime

shifts takes the form

AE(yt+1|Ωt) = d+Byt +Cxt (43)

xt = c+Φxt−1 + vt
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for yt an (ny×1) vector of endogenous variables, Ωt = {yt,yt−1, ...,y1}, xt an (nx×1) vector

of exogenous variables, and vt a martingale difference sequence. Such a system might have

been obtained as an approximation to the first-order conditions for a nonlinear DSGE using

the standard perturbation algorithm, or often is instead simply postulated as the primitive

conditions of the model of interest. If A−1 exists and the number of eigenvalues of A−1B

whose modulus is less than or equal to unity is equal to the number of predetermined

endogenous variables, then a unique stable solution can be found of the form5

kt+1 = hk0 +Hkkkt +Hkxxt

dt = hd0 +Hdkkt +Hdxxt

where kt denotes the elements of yt that correspond to predetermined variables while dt

collects the control or jump variables. Algorithms for finding the values of the parameters

hi0 and Hij have been developed by Blanchard and Kahn (1980), Klein (2000), and Sims

(2001).

We could also generalize (43) to allow for changes in regime,

AstE(yt+1|Ωt, st, st−1, ..., s1) = dst+Bstyt +Cstxt (44)

where st follows an exogenous N -state Markov chain and Aj denotes an (ny×ny) matrix of

parameters when the regime for date t is given by st = j. To solve such a model, Davig and

Leeper (2007) suggested exploiting the feature that conditional on S = {st}∞t=1 the model is

linear. Let yjt correspond to the value of yt when st = j and collect the set of such vectors

5 Klein (2000) generalized to the case when A may not be invertible.
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for all the possible regimes in a larger vector Yt:

Yt
(Nny×1)

=






y1t
(ny×1)

...

yNt
(ny×1)






.

If we restrict our consideration to solutions that satisfy the minimal-state Markov property,

then

E(yt+1|S,Ωt) = E(yt+1|st+1, st,Ωt)

and

E(yt+1|st = i,Ωt) =
N�

j=1

E(yt+1|st+1 = j, st = i,Ωt)pij.

Hence when st = i,

AstE(yt+1|st,Ωt) = (p′i ⊗Ai)E(Yt+1|Yt) (45)

where

pi =






pi1

...

piN






denotes column i of the Markov transition probabilities, with elements of pi summing to

unity. Consider then the stacked structural system,

AE(Yt+1|Yt) = d+BYt +Cxt (46)

A
(Nny×Nny)

=






p
′

1
(1×N)

⊗ A1
(ny×ny)

...

p
′

N
(1×N)

⊗ AN
(ny×ny)






d
(Nny×1)

=






d1
(ny×1)

...

dN
(ny×1)






(47)
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B
(Nny×Nny)

=






B1 0 · · · 0

0 B2 · · · 0

...
... · · · ...

0 0 · · · BN






C
(Nny×nx)

=






C1
(ny×nx)

...

CN
(ny×nx)






.

This is a simple regime-independent system for which a solution can be found using the

traditional method. For example, with no predetermined variables, if all eigenvalues of

A−1B are outside the unit circle, then we can find a unique stable solution of the form

Yt
(Nny×1)

= h
(Nny×1)

+ H
(Nny×nx)

xt
(nx×1)

(48)

which implies that

yt
(ny×1)

= hst
(ny×1)

+ Hst
(ny×nx)

xt
(nx×1)

(49)

for hi and Hi the ith blocks of h and H, respectively. If (48) is a solution to (46), then (49)
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is a solution to (44).6

However, Farmer, Waggoner, and Zha (2010) demonstrated that while (48) yields one

stable solution to (44), it need not be the only stable solution. For further discussion see

Farmer, Waggoner and Zha (2009).

3.4 Multiple equilibria.

Other economists have argued that models in which there are multiple possible solutions—

for example, system (43) with no predetermined variables and an eigenvalue of A−1B inside

the unit circle— are precisely those we should be most interested in, given the perception that

sometimes consumers or firms seem to become highly pessimistic for no discernible reason,

bringing the economy into a self-fulfilling downturn; see Benhabib and Farmer (1999) for a

survey of this literature. One factor that could produce multiple equilibria is coordination

6 If (49) holds, then

E(yt+1|Ωt, st = i) =
N�

j=1

pij [hj +Hj(c+Φxt)].

Thus for (44) to hold it must be the case that for each i = 1, ..., N,

Ai

N�

j=1

pijHjΦ = BiHi +Ci

Ai

N�

j=1

pij(hj +Hjc) = di +Bihi.

But if (48) is a solution to (46), then

A[h+H(c+Φxt)] = d+B(h+Hxt) +Cxt

block i of which requires from (47) that

(p′i ⊗Ai)HΦ = BiHi +Ci

(p′i ⊗Ai)(h+Hc) = di +Bihi

as were claimed to hold.
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externalities. The rewards to me of participating in a market may be greatest when I

expect large numbers of others to do the same (Cooper and John, 1988; Cooper, 1994).

Multiple equilibria could also arise when expectations themselves are a factor determining

the equilibrium (Kurz and Motolese, 2001). Kirman (1993) and Chamley (1999) discussed

mechanisms by which the economy might tend to oscillate periodically between the possible

regimes in multiple-equilibria settings.

A widely studied example is financial market bubbles. In the special case of risk-neutral

investors (that is, when U ′(C) is some constant independent of consumption C), equation

(38) relating the price of the stock Pt to its future dividend Dt+1 becomes

Pt = βEt(Pt+1 +Dt+1). (50)

One solution to (50) is the market-fundamentals solution given by

P ∗t =
∞�

j=1

βjEt(Dt+j).

But Pt = P ∗t + Bt also satisfies (50) for Bt any bubble process satisfying Bt = βEtBt+1.

Hall, Psaradakis and Sola (1999) proposed an empirical test of whether an observed financial

price is occasionally subject to such a bubble regime. This test has been applied in dozens

of different empirical studies. However, Hamilton (1985), Driffill and Sola (1998), and

Gürkaynak (2008) noted the inherent difficulties in distinguishing financial bubbles from

unobserved fundamentals.
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3.5 Tipping points and financial crises.

In other models, there may be a unique equilibrium but under the right historical conditions,

a small change in fundamentals can produce a huge change in observed outcomes. Such

dynamics might be well-described as locally linear processes that periodically experience

changes in regime. Investment dynamics constitute one possible transmission mechanism.

The right sequence of events can end up triggering a big investment decline that in turn

contributes to a dramatic drop in output and an effective change in regime. Acemoglu and

Scott (1997) presented a model where this happens as a result of intertemporal increasing

returns, for example, if an investment that leads to a significant new discovery makes addi-

tional investments more profitable for a short time. Moore and Schaller (2002), Guo, Miao,

and Morelle (2005), and Veldkamp (2005) examined different settings in which investment

dynamics contribute to tipping points, often through a process of learning about current

opportunities. Startz (1998) demonstrated how an accumulation of small shocks could un-

der certain circumstances trigger a dramatic shift between alternative production technolo-

gies. Learning by market participants introduces another possible source of tipping-point

or regime-shift dynamics (Hong, Stein, and Yu, 2007; Branch and Evans, 2010). Gârleanu,

Panageas and Yu (2015) demonstrated how tipping points could emerge from the interaction

of limited market integration, leveraging, and contagion.

Brunnermeier and Sannikov (2014) developed an intriguing description of tipping points

in the context of financial crises. They posited two types of agents, designated “experts”

and “households”. Experts can invest capital more productively than households, but
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they are constrained to borrow using only risk-free debt. In normal times, 100% of the

economy’s equity ends up being held by experts. But as negative shocks cause their net

worth to decline, they can end up selling off capital to less productive households, lowering

both output and investment. This results in a bimodal stationary distribution in which

the economy spends most of its time around the steady state in which experts hold all the

capital. But a sequence of negative shocks can lead the economy to become stuck in an

inefficient equilibrium from which it can take a long time to recover.

A large number of researchers have used regime-switching models to study financial

crises empirically. These include Hamilton’s (2005) description of banking crises in the 19th

century, Asea and Blomberg’s (1998) study of lending cycles in the late 20th century, and

an investigation of more recent financial stress by Hubrich and Tetlow (2015).

3.6 Currency crises and sovereign debt crises.

A sudden loss of confidence in a country can lead to a flight from the currency which in turn

produces a shock to credit and spending that greatly exacerbates the country’s problems. A

sudden wave of pessimism could be self-fulfilling, giving rise to multiple equilibria that could

exhibit Markov switching (Jeanne and Masson, 2000), or could be characterized by tipping

point dynamics where under the right circumstances a small change in fundamentals pushes

a country into crisis. Empirical investigations of currency crises using regime-switching

models include Peria (2002) and Cerra and Saxena (2005).

Similar dynamics can characterize yields on sovereign debt. If investors lose confidence

in a country’s ability to service its debt, they will demand a higher interest rate as compen-
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sation. The higher interest costs could produce a tipping point that indeed forces a country

into default or to make drastic fiscal adjustments (Greenlaw, et al., 2013). Analyses of

changes in regime in this context include Davig, Leeper, and Walker (2011) and Bi (2012).

3.7 Changes in policy as the source of changes in regime.

Another source of a change in regime is a discrete shift in policy itself. One commonly

studied possibility is that control of monetary policy may periodically shift between hawks

and doves, the latter being characterized by either a higher inflation target or more willing-

ness to tolerate deviations of inflation from target. Analyses using this approach include

Owyang and Ramey (2004), Schorfheide (2005), Liu, Waggoner, and Zha (2011), Bianchi

(2013), and Baele, et al. (2015).

An alternative possibility is that changes in fiscal regime can be a destabilizing factor.

Ruge-Murcia (1995) showed how a lack of credibility of the fiscal stabilization in 1984 con-

tributed to the changes in inflation Israel experienced, while Ruge-Murcia (1999) documented

the close connection between changes in fiscal regimes and inflation regimes for Brazil.

4 Conclusions and recommendations for researchers.

We have seen that researchers have a rich set of tools and specifications on which to draw

for interpreting data and building economic models for environments in which there may be

changes in regime. The chapter closes with some practical recommendations for researchers

as to which options are most promising.

Although a researcher might be tempted to use the most general specification possible,
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with all the parameters changing across a large number of regimes and time-varying tran-

sition probabilities, in practice this is usually asking more than the data can deliver. For

example, for postwar U.S. data we have only 11 recessions, which economic theory says

should be difficult or impossible to predict (Hamilton, 2011). Building a richly parameter-

ized description of the transition into and out of recession could easily result in an overfitted

and misspecified model. By contrast, using a simple time-invariant Markov chain is likely

to give a reasonable and robust approximation to the key features of the data. Similarly, we

know from the analytic characterization of the maximum likelihood estimates (e.g., equa-

tion 24) that inference about parameters that only show up in regime i can only come from

observations within that regime. With postwar quarterly data that would mean about 50

observations from which to estimate all the parameters operating during recessions. One or

two parameters could be estimated fairly well, but overfitting is again a potential concern

in models with many parameters. For this reason researchers may want to limit the focus

to a few of the most important parameters that are likely to change, such as the intercept

and the variance.

Where more than two regimes are required, there again are benefits to keeping the model

parsimonious. For example, a common finding is that the variance of U.S. output growth

permanently decreased in 1984 (McConnell and Perez-Quiros, 2000) while the intercept peri-

odically shifts to negative during recessions. This requires 4 different regimes— the economy

could be in expansion or recession and the date could be before or after the Great Mod-

eration. A useful simplification treats the variance regime as independent of the recession
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regime, requiring estimation of only 4 transition probabilities rather than 12, as in Kim and

Nelson (1999b).

Another feature of which researchers should be aware is that there can be multiple local

maxima to the likelihood function. It is therefore good practice to begin the EM iterations

from a large number of different starting points to make sure we are always ending up

with the same answer, and also as a practical test of whether the algorithm has indeed

converged to a fixed point. Likewise with Bayesian methods we want to make sure numerical

algorithms converge to the same posterior distribution under alternative starting points and

chain dynamics, and the procedure should take into account the label-switching problem.

Provided researchers make note of these issues, these approaches offer a flexible way of

modeling some of the key nonlinearities in macroeconomic dynamics without sacrificing the

simplicity and tractability of linear models.
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Appendix: Derivation of EM equations for restricted VAR.

As noted by Hamilton (1990, p. 47), the M or maximization step of the EM algorithm

can be implemented by finding the first-order conditions associated with maximizing the

likelihood conditional on a particular set of realizations for the regimes S = {s1, ..., sT} and

then weighting these by the smoothed probability of S and summing over all the possible

realizations of S. For a VAR restricted as in (28), the conditional likelihood is

1

(2π)nT/2|Σ|T/2 exp
�
−(1/2)�T

t=1(yt −Ax1,t−1 −Bstx2,t−1)
′Σ−1(yt −Ax1,t−1 −Bstx2,t−1)

�

with first-order conditions

�T
t=1(yt −Ax1,t−1 −Bstx2,t−1)x

′
1,t−1 = 0 (51)

�T
t=1(yt −Ax1,t−1 −Bstx2,t−1)x

′
2,t−1δ(st = i) = 0 for i = 1, ...,N (52)

�T
t=1(1/2) [Σ− (yt −Ax1,t−1 −Bstx2,t−1)(yt −Ax1,t−1 −Bstx2,t−1)

′] = 0 (53)

where δ(st = i) denotes unity if st = i and zero otherwise. Stacking (51)-(52) horizontally

gives

�T
t=1(yt−Ax1,t−1−Bstx2,t−1)z

′
t−1 =

�T
t=1

�
yt −

�

A B1 B2 · · · BN

�
zt−1

�
z′t−1 = 0

(54)

for

z′t−1
[1×(nk1+Nk2)]

=

�

x′1,t−1 x′2,t−1δ(st = 1) x′2,t−1δ(st = 2) · · · x′2,t−1δ(st = N)

�
.

Multiplying the tth term within the sums in (54) and (53) by Prob(st = i|ΩT ; λ̂
(ℓ)
), summing

over i = 1, ..., N and rearranging gives equations (29) and (30).
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Table 1

Parameter

(1)

Interpretation

(2)

Value from NBER

classifications

(3)

Value from GDP alone

(4)

m1 average growth in expansion 4.5 4.62

m2 average growth in recession −1.2 −0.48

σ standard deviation of growth 3.5 3.34

p11 prob. expansion continues 0.95 0.92

p22 prob. recession continues 0.78 0.74

Parameter estimates based on characteristics of expansions and recessions as classified by

NBER (column 3), and values that maximize the observed sample log likelihood of postwar

GDP growth rates (column 4), 1947:Q2-2004:Q2. Source: Chauvet and Hamilton (2006).
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Figure 1. U.S. civilian unemployment rate, seasonally adjusted, 1948:M1-2015:M11.  
Shaded regions correspond to NBER recession dates. 
.  
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Figure 2. One-quarter-ahead smoothed probabilities ����(�� = 2|Ω��, ����), 1967:Q4-
2014:Q2, as inferred using solely GDP data as reported as of date t +1.  Shaded regions 
correspond to NBER recession dates which were not used in any way in constructing the 
probabilities.  Prior to 2005, each point on the graph corresponds to a simulated real-time 
inference that was constructed from a data set as it would have been available four 
months after the indicated date, as reported in Chauvet and Hamilton (2006).  After 2005, 
points on the graph correspond to actual announcements that were publicly released four 
months after the indicated date.  Source: updated from Hamilton (2011) and 
www.econbrowser.com. 
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