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I Introduction 

RECENT work 1 has shown pretty clearly 
that the conditions under which the pro- 

duction possibilities of a technologically diverse 
economy can be represented by an aggregate 
production function are far too stringent to be 
believable. This is true not only of the condi- 
tions for the existence of an aggregate capital 
stock, where what is required is that the pro- 
duction functions of individual firms differ at 
most by capital-augmenting technical differ- 
ences, but also of the existence of labor and 
output aggregates, where every firm must hire 
the same proportions of each type of labor and 
produce the same market basket of outputs. 
Moreover, the view that aggregate production 
functions are only approximations anyway can- 
not be sustained merely because such approxi- 
mations are required only to hold over a limited 
range of the variables.2 

Yet aggregate production functions appar- 
ently work nevertheless and do so in a way 
which is prima facie not easy to explain. It is 
easy enough to understand why, in economies 
in which things move more or less together, a 
relationship giving an aggregate measure of 
output as dependent on aggregate measures of 
capital and labor should give a good fit when 
applied to the data. What is not so easy to 
explain is the fact that the marginal product 
of labor in such an estimated relationship ap- 
pears to give a reasonably good explanation of 
wages as well. In its simplest form, this puzzle 
is set by a remark which Solow once made to 

me that, had Douglas found labor's share to be 
25 per cent and capital's 75 per cent instead 
of the other way around, we would not now be 
discussing aggregate production functions. 

If the fact that estimated aggregate produc- 
tion functions explain wages fairly well is a 
statistical artifact, then it is certainly not an 
obvious one. There seems little reason why a 
function fitted to time series of output and 
input data on an aggregate basis should have 
this property; yet coincidence seems hard to 
swallow.3 

This paper reports on a simulation experi- 
ment which may cast some light on this issue. 
Aggregate Cobb-Douglas production functions 
were estimated for data produced by numerous 
fictitious and very simple economies in which 
there was only one homogeneous output and one 
homogeneous kind of labor but in which the 
conditions for the existence of an aggregate 
capital stock were definitely violated. Various 
measures of the performance of such an aggre- 
gate function were computed, among them mea- 
sures of how well the aggregate production 
function did in explaining the history of wages. 
The histories of the economies were varied in a 
number of ways and the performance measures 
compared to see under what circumstances the 
aggregate production function did well. 

The general object of the study was thus to 
determine whether economies in which we know 
with certainty that an aggregate production 
function is a poor description of the actual 

* This research was supported by NSF Grant #GS-1791. 
I am indebted to Nancy Greene and, especially, Hossein 
Askari for programming and computational assistance. 

' Summarized in Fisher [7]. Relevant pieces include 
Diamond [2]; Fisher [3, 4, 5, 6]; Gorman [8]; Solow 
[10, 12], and Whitaker [13, 14], among others. 

' See Fisher [6]. 

'Phelps Brown [9] simply dismisses the time series results 
as poor or implausible, largely because of their failure to 
allow for technical change. In the light of Solow's seminal 
paper [11] and its successors, this can no longer be done. 
Phelps Brown's arguments as to cross-section estimates ex- 
plain nothing about the time series results, nor do they show 
why a cross-sectionally estimated production function should 
give reasonable wage predictions for years far from that of 
the original cross section. 
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306 THE REVIEW OF ECONOMICS AND STATISTICS 

technology and in which forces which may make 
for approximate aggregation possibilities in the 
real world have been suppressed can neverthe- 
less generate wages which can fairly accurately 
be predicted by a fictitious aggregate produc- 
tion function. If this can happen, then the fact 
that aggregate production functions do indeed 
give good wage predictions in practice cannot 
be taken as evidence that for some deep reason 
they really summarize the true technology. On 
the other hand, if such good wage predictions 
(and good fits to input and output data) are 
produced in our experiments under systematic 
circumstances of some sort, then reliance on 
aggregate production functions as a descriptive 
device in empirical work can be taken to be 
reliance on the persistence of such systematic 
circumstances in the real world. 

The principal result of this investigation, 
while necessarily only suggestive, is very sug- 
gestive indeed. It is obvious that, since a Cobb- 
Douglas production function implies the con- 
stancy of labor's share, such a function cannot 
be expected to explain wages well in an econ- 
omy in which that share is not constant. What 
is not obvious is that in economies in which 
labor's share happens to be roughly constant, 
even though the true relationships are far from 
yielding an aggregate Cobb-Douglas, such an 
aggregate production function will yield a good 
explanation of wages. Yet this is generally what 
we find for our fictitious economies and the 
relationship between the variance in labor's 
share and the goodness-of-fit of the wage pre- 
dictions is close, although certainly not perfect. 

If such a result holds for other than our sim- 
plified and fictitious economies, it has important 
implications. It suggests that the view that the 
constancy of labor's share is due to the presence 
of an aggregate Cobb-Douglas production func- 
tion is mistaken. Causation runs the other way 
and the apparent success of aggregate Cobb- 
Douglas production functions is due to the 
relative constancy of labor's share. The ex- 
planation of such constancy remains to be 
found.4 Our results suggest that should the 

forces making for it suddenly change, then 
aggregate Cobb-Douglas production functions 
would cease to give reasonable wage explana- 
tions. 

In a word then, the answer suggested by the 
present results to Solow's question is that an 
aggregate Cobb-Douglas production function 
estimated from input and output data does well 
in wage prediction not because wages are truly 
generated by it but because the behavior of 
labor's share just happens to approximate the 
central stylized fact generated by such a func- 
tion, even though the mechanism actually gen- 
erating wages and output is rather different. 
Such a view obviously has extensions to the 
performance of aggregate production functions 
other than Cobb-Douglas. 

Should one be disturbed by these results? 
That depends on one's prior position regarding 
the nature of an estimated aggregate produc- 
tion function. There are several possible posi- 
tions: 

1) An aggregate production function works 
well in relating outputs to inputs and in pre- 
dicting wages because it really summarizes the 
underlying technological relationships at the 
micro level. This view is demonstrably false as 
a matter of theory unless one also believes that 
there are unknown underlying forces which in 
some sense restrict the dimensionality of the 
aggregation problem.5 This makes the use of 
such functions for wide-ranging theoretical pur- 
poses rather suspect. 

2) An aggregate production function appears 
to be a useful empirical approximation only be- 
cause the underlying variables move more or less 
together. So long and only so long as such com- 
mon movement continues can we rely on such 
functions to give good predictions. This view 
is only partly correct. It is true that an aggre- 
gate production function works well so long as 
there is little relative movement (this is borne 
out in the results below). These are by no 
means the only cases in which our results show 
an aggregate production function working well. 
Even when there is a great deal of relative 
movement in the underlying variables, an ag- 
gregate Cobb-Douglas does well in our experi- 4For purposes of this discussion, I assume that such 

constancy is really there and that an aggregate Cobb- 
Douglas really does fit the real facts pretty well. Obvious 
extensions to the case of other more complex aggregate 
production functions suggest themselves and are commented 

on briefly below, but the central tenor of the text is un- 
affected. 

5See Fisher [7]. 
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AGGREGATE PRODUCTION FUNCTIONS AND WAGES 307 

ments so long as labor's share just happens to 
be roughly constant. The low relative move- 
ment experiments are just special cases of this 
general result. 

3) An aggregate Cobb-Douglas only works 
well so long as labor's share is relatively con- 
stant. Were labor's share to change, predic- 
tions made with an aggregate Cobb-Douglas 
would cease to be good ones. This view is 
obviously correct, since an aggregate Cobb- 
Douglas predicts a constant share for labor. 
The point of our results, however, is not that 
an aggregate Cobb-Douglas fails to work well 
when labor's share ceases to be roughly con- 
stant, it is that an aggregate Cobb-Douglas will 
continue to work well so long as labor's share 
continues to be roughly constant, even though 
that rough constancy is not itself a consequence 
of the economy having a technology that is 
truly summarized by an aggregate Cobb-Doug- 
las. 

Our results, then, may be said to support the 
use of aggregate production functions as inter- 
esting descriptive and empirical devices (in 
the eyes of those who already regarded such use 
as appropriate) only so long as certain under- 
lying regularities continue. At the same time, 
our results damage the view that the apparent 
success of aggregate production functions in 
wage predictions shows that the true technolog- 
ical relationships of a diverse economy can 
really be summarized for theoretical purposes 
in an aggregate production function. 

II The Model 

Our economies each consist of n units which 
hire the same kind of labor and produce the 
same kind of output. We shall refer to these 
units as "firms," although they might equally 
well or better be thought of as industries, each 
of which consists of a number of identical firms. 
In our experiments, n was taken to be 2, 4, or 8. 
Much higher numbers would have led to greatly 
increased computing time and the results do not 
suggest that it would have made much differ- 
ence. 

Each firm has a different kind of capital stock 
and its technology is embodied in that stock. 
Thus, different firms have different production 
functions and capital is not transferable among 

firms (although labor is). The ith firm's pro- 
duction function is given by: 

a, 1-at 

y i~t Ai (t) L/i(t) Ki (t) 

Here, Ki is the amount of the ith firm's capital; 
Li the amount of labor employed by the firm; 
and yi the amount of output it produces. Cal- 
endar time is denoted by t (running from 1 to 
20 in each economy); Aj(t) is a function of 
time representing disembodied Hicks-neutral 
technical change (which, given the fact that 
the production functions are Cobb-Douglas, is 
indistinguishable from disembodied factor-aug- 
menting change)"; a, is a parameter. 

At any moment of time, the aggregate labor 
force employed is, of course, 

n 

L(t) L (2) 
i== 

Total output produced is 
n 

Y~t Y yMt) (3) 
i=l 

However, whereas L(t) is one of the givens of 
the economy, Y(t) is not, since it obviously 
depends on the way in which employment is 
allocated to firms. 

Such allocation is performed so as to make 
total production efficient. As would a perfect 
labor market or a socialist planning board, the 
L(t) are chosen each period so as to maximize 
Y (t), given L (t), K, (t), . . . , K,, (t) , A I(t) , 
.. . A,,(t), and (1) and (2). We denote output 
so maximized as Y*(t). 

Now, it is not hard to show that if all the ai 
were the same, then Y* would be given by an 
aggregate Cobb-Douglas production function: 

Y* (t) = A (t) L(t) aJ(t)1 -a (4) 

where J(t) depends only on the Ki(t) and the 
Ai(t) and not on L(t). (This would not be 
true, incidentally, of Y(t).) The results on the 
existence of aggregate production functions, 
already referred to, imply that this will cer- 

6 Embodied technical change, of course, is, in a sense, 
what the whole model is about. Cobb-Douglas production 
functions for individual firms were used because they allow 
great simplifications in the labor-allocation algorithm de- 
scribed below and because they ought to provide the best 
chance for an aggregate Cobb-Douglas to work well. It is 
planned to extend the study to different functional forms 
in later work. 
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tainly not be the case if the ai are different for 
different firms. Indeed, they show that there 
exists no aggregate production function: 

Y*(t) -F(J(t) L(t)t) (5) 
in which J(t) is merely a capital index inde- 
pendent of labor.7 For each economy, however, 
we ignore this and estimate an aggregate Cobb- 
Douglas production function in the form (4) 
with J(t) chosen as about to be described. As 
already stated, the relative performance of such 
estimated functions is compared across econ- 
omies. 

A single experiment, then, consists of choos- 
ing values for the parameters and of generating 
twenty-year time series for L(t), K,(t), . . 

K (t), and A1 (t), .. . , An(t). For each year, 
the L (t) are chosen so as to maximize Y(t) 
subject to (2).8 Given the labor assignments, 
wages and capital rentals for the n different 
capital types are computed by taking marginal 
products in the individual production functions. 
We denote by w(t) the resulting wage at time 
t and by ri(t) the marginal product of the ith 

capital type at that time. 
It will be noted that the individual capital 

stocks are given exogenously rather than having 
the marginal value of the last dollar invested 
the same in all firms. It might be suspected that 
aggregate production functions are relatively 
more likely to do well when such an investment 
process is going on at the micro level. Such a 
conjecture is very far from being a proof, how- 
ever, and is in any case irrelevant for present 
purposes. Our results show that an aggregate 
production function can do well in predicting 

wages even when all such f orces which one 
might expect to aid aggregation have been sup- 
pressed. This makes the inferences that can be 
drawn from the success of aggregate production 
functions in practice as to their accuracy as 
theoretical summaries of the underlying tech- 
nological relationships rather weak.' 

Now, it is obvious from Euler's theorem that: 

Y* (t) - w (t) L (t) + ri(t) Ki (t) 

(t1 ..20). (6) 

This means that at any moment of time, the 
sum of the right-hand side of (6) makes an 
excellent capital index. The problem, of course, 
occurs because the relative magnitudes of the 
ri(t) not only do not remain constant over time 
but also are not independent of the magnitude 
of L(t); this is the essence of the capital-ag- 
gregation problem. 

Nevertheless, it seems clear that an aggregate 
production function will do best if its capital 
index comes as close as possible to weighting 
different capital goods by their rentals.10 Ac- 
cordingly, we constructed J(t) for use in (4) 
by 

n 

J~t) =ri~(t) (t = 1, .. .,Y20), . (7) 

where 
20 

i r(t) K+ (t) 
20'l (i= 1 .. ,n). . (8) 

Ki(t) 
t=1 

III The Experiments: Detailed Description 

Obviously, crucial questions are the choice 
of the parameters and time series which define 
an experiment and the choice of measures of 
performance of the aggregate production func- 
tion. In the present section, we discuss the 
former question, taking up the latter in the next 
section. 

7See Fisher [3]. 
This was done as follows, making use of the property 

that with Cobb-Douglas production functions every Li(t) 
> 0. It is easy to write an algorithm which equalizes (by 
iteration) the marginal product of labor in any given pair 
of firms, given the total amount of labor employed by those 
firms. When n = 2, this is all there is to it, since equality 
of marginal product is obviously the condition for efficient 
allocation. For n > 2, we first divided labor equally among 
all n firms; then we took the total labor assigned to firms 1 
and 2 and reallocated it between the firms to equalize 
marginal product. The next step took the labor then 
allocated to firms 2 and 3 and reassigned it to them effi- 
ciently; then we went on to firms 3 and 4, and so forth up 
to firms n - 1 and n. The process was then repeated 
starting at firms 1 and 2 and continued until all marginal 
products were equalized (approximately). It is easy to 
prove convergence of this algorithm and, although it is not 
particularly efficient, it did not take a prohibitive amount 
of computer time for n = 8. 

'Although it has other implications for their usefulness 
in empirical work, as already discussed. 

10 The fact that other ways of constructing the index 
might have led to worse results hardly seems relevant. In 
any case, early experimentation with a capital index con- 
structed using base-year rentals did not reveal any striking 
differences in the results. 
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We begin with the crucial parameters of the 
production functions, ai. As aggregate esti- 
mates for the United States tend to show a 
Cobb-Douglas exponent for labor of about 0.75, 
we chose the ac around this value. In one set 
of experiments, the a, were chosen in the range 
0.7-0.8; in a second, they were chosen in the 
range 0.6-0.9. In both cases, the n individual 
ac were chosen so that a, was at the lower and 
a, at the upper endpoint of the range, with the 
remainder (if any) of the exponents uniformly 
spread over the range. Thus, for example, in 
the 0.6-0.9 case, with n = 4, the exponents 
were 0.6, 0.7, 0.8, 0.9. Note that in all cases, 
the unweighted average of the ai was kept con- 
stant at 0.75. 

As already indicated, n was chosen at 2, 4, 
or 8. A little reflection, however, shows that 
changing the number of firms represented in 
this model is not merely a matter of changing 
n, despite the terminology. One has two choices 
in increasing the number of firms. The first of 
these is to add firms without altering the set of 
a, to be examined. Given constant returns and 
efficient labor allocation, however, adding a 
firm with a labor exponent identical to that of 
an existing firm is equivalent to increasing the 
size of the existing one by giving it more capital 
stock. Since one of the other choices described 
below involves doing just this, changes in n are 
not the only way in which the experiments re- 
flect changes in the number of firms. 

Aside from this, however, a change in n which 
is not merely equivalent to an increase in firm 
size must involve a change in the set of a1. One 
can not merely change n alone. The way in 
which increases in n were in fact reflected in the 
set of ai has already been indicated. Note that 
whereas the average ai is always the same, an 
increase in n involves a reduction in the vari- 
ance of the ai around their mean, other things 
equal. (Weighting by firm size, of course, that 
variance can increase when we increase the 
number of firms by changing firm size at given 
ai; so can the weighted mean.) An increase in 
n involves a greater number of different firms, 
but also involves less polarization among firms. 

The three sets of exogenously specified time 
profiles were all chosen to be approximately ex- 

ponential trends. Thus: 
log L(t) Xo + Alt + A2Et; (9) 

log Ki(t) /3io + Ailt + /3927it 

(i = I ... , n); (10) 
log Ai (t) Yio + Tilt + Y*MVit 

(i = 1, ... ., n), (1 
where the Xj, fij, and Tij are parameters, and Et, 

the qit, and the vit are independently distributed 
standard normal deviates. The random ele- 
ments (which were kept small) were introduced 
partly for minor reasons of realism, partly to 
see what difference they made, and partly to 
avoid multicollinearity in the estimation of the 
aggregate production function. This is partic- 
ularly important in the cases in which allowance 
for exponential disembodied technical change is 
made in estimating (4), since the variables in 
that regression will be log (J(t) L(t)) and t. 
Moreover, as reported below, some regressions 
were made without imposing constant returns, 
so that the variables in such cases would be 
log J(t), log L(t), and t. 

After considerable gross experimentation to 
discover what parameter choices made much 
difference, the random terms were standardized 
for the main experiments reported here by al- 
ways taking X2 = .02, /2 = .0001, and Yi2 = 0 

(i = 1 , . .. , n) . 
Further, X1 was chosen as 0.03 and X0 as zero. 

Thus, labor always grows at an average 3 per 
cent trend with deviations normally distributed 
with mean zero and standard deviation 0.02. 
The initial experimentation referred to showed 
the measures of performance of the aggregate 
production function not to be terribly sensitive 
to choices of X0 and Xl, so these were standard- 
ized to reduce the gigantic number of different 
cases examined. For similar reasons, all the yio 
were chosen as 0. (This is merely a choice of 
units.) 

The performance measures are sensitive, as 
one might expect, to the choices made as to the 
capital and technical change parameters, the 
principal sensitivity being to the trend terms. 
If all firms are growing at the same rate, then 
an aggregate capital index can be expected to 
perform rather well; if firms grow at rather 
different rates, this is less likely to be the case. 

The initial conditions for the K* were chosen 
as follows. The n firms were divided into two 
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halves, one with relatively low values of a, and 
one with relatively high values. XVe shall refer 
to these as "low-a" and "high-a" firms, respec- 
tively. The Ohio were chosen in three sets. In the 
first of these, all 3i, = o (i 1,..., n). In 
the second set, all /i,, for the low-a firms were 
set at 0 and the /,30 for the high-a firms were set 
at 2. In the third set, these values were re- 
versed. As already remarked, these choices can 
also be thought of as changing the number 
of firms. Since all logarithms were natural, 
changing a li/, from 0 to 2 amounts to mul- 
tiplying the initial capital stock by something 
over 7. 

The selection of the trend parameters was 
done rather more finely. In one set of experi- 
ments, which I shall refer to as "two-group 
capital" experiments, /,S was set at 0 for firms 
in the high-a group, while all I,3 for firms in 
the low-a group were set equal to each other 
and, in successive runs allowed to vary from 
-0.05 to +0.05 in steps of 0.01.11 

Similarly, in a second set of experiments, 
which I shall call "two-group Hicks" experi- 
ments, the yij for the high-a firms were set at 0. 
To secure comparability with the two-group 
capital experiments, however, the yii for the 
remaining firms were chosen so that the equiv- 
alent trends in their capital stocks would all 
be equal and move in steps of 0.01 from -0.05 
to +0.05. Such equivalent trends, of course, 
are such that a choice of a particular value for 
/3jl corresponds to a choice of yi, = j( 1 - a). 
We also report results for preliminary runs of 
the two-group Hicks experiments, in which the 
yo for the low-a firms were chosen all equal and 
moving from -0.05 to +0.05 in steps of 0.01. 

Now, since in these two-group experiments, 
all firms in a given group grow or shrink to- 
gether, there is a real sense in which they are 
roughly all one firm for our purposes, so that, 
were these the only experiments performed, we 
would not be giving too much scope to the 
effects of increases in n. This is particularly so, 
since the way in which the ai were chosen, as 
already described, means that the average ai 
for each of the two groups in such an experi- 

ment is getting closer to the other one when n 
Increases. 

Accordingly, we performed two more sets of 
Experiments, which I shall refer to as "fanning 
capital" and "fanning Hicks" experiments, re- 
,pectively. 

In the fanning capital experiments, /l3i was 
ret equal to zero for the firm with the highest 
xi. Call this firm 1 and number the firms so 
that ai decreases.12 The remaining P,/ were 
chosen as: 

Jail - (i-~ Ott = 1, . .., n) (12) 
where p. was allowed to go from -0.05 to +0.05 
in steps of 0.01. Thus the rates of growth of 
the firms "fanned out" from that of the first 
firm. Note that much bigger relative rates of 
growth are involved here (for n > 2) than in 
the case of the two-group experiments. 

The fanning Hicks experiments were chosen 
analogously. In these, 

yi, - 
(1-al)(i-1)tL Oi- 1, .. . ,n) (13) 

with it chosen as before. 
Since the number of separate experiments to 

be run would be gigantic if all possible com- 
binations were tried, all yii were set at zero in 
performing capital experiments and all ,3ij were 
set at zero when performing Hicks experiments. 

The number of different experiments was still 
high. Each of the two-group sets (including 
the preliminary two-group Hicks set) and each 
of the fanning sets involves 11 experiments for 
each choice of the other parameters. Since 
there are 3 choices of n, 2 choices of the range 
of the ai, and 3 choices of initial conditions for 
the capital stocks, each five sets of experiments 
involves 198 separate runs. In addition, to 
ensure that the random variation involved had 
little effect on the conclusions, we performed 
5 runs instead of 1 each time all the 8is were 
set at zero in the capital experiments or all the 
Yij were set at zero in the Hicks experiments. 
This brought the total number of runs to 202 
for each of the five sets or a grand total of 1010 
exclusive of the preliminary experimentation 
referred to earlier.13 However, since for n 2 

" Note that, in view of constant returns, there is no 
essential difference between allowing one group of firms to 
shrink and allowing the other to grow. 

12 Thus the high-a firms are firms 1, ..., n/2 and the 
low-a ones are firms n/2+1, . . , n. 

13 Since, as it turned out, there was only negligible 
difference in the results of the experiments with zero growth 
which differ only by random variation, we used only one 
of the five sets each time in analyzing the results as reported 
below. 
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a fanning experiment is identical with a, two- 
group experiment, the actual total of runs, ex- 
clusive of the extensive preliminary experimen- 
tation, was 830. 

The various choices of parameters are sum- 
marized in table 1. 

TABLE 1.- DIFFERENT CHOICES OF PARAMETERS 
FOR EXPERIMENTS 

Parameters Choice of Values 

n 2;4;8. 
at evenly distributed over range .7 - .8 or 

.6 - .9. 
Xo 0. 

X1 .03. 
X2 .02. 
B3 io 0 all firms; 0 low-a firms and 2 high-a 

firms; 0 high-a firms and 2 low-a firms. 
,P 1 0 all firms in Hicks experiments; in two- 

group capital experiments, 0 for high-a 
firms and ,u for low-a firms; in fanning 
capital experiments, (i-1)A. 

Pi2 .0001 all firms. 
Oyio 0 all firms. 

'Yil 0 all firms in capital experiments; in final 
two-group Hicks experiments, 0 for high-a 
firms and (1-as)/A for low-a firms; in pre- 
liminary two-group Hicks experiments, 0 
for high-a firms and Lu for low-a firms; in 
fanning Hicks experiments, (1-ast) (i-1) At. 

ti2 0 all firms. 
-0.05, -0.04,. .., 0,..., 0.04, 0.05. 

IV Aggregate Regressions and Measures 
of Performance 

In each of the experiments, four regressions 
were performed on the aggregate data. In two 
of these constant returns was imposed and in 
two no such imposition was made; further, 
given the imposition or non-imposition of con- 
stant returns, regressions were run both with 
and without a trend term allowing for Hicks- 
neutral disembodied technical change. This was 
done both for Hicks experiments in which there 
was such change at the firm level and for capital 
experiments in which there was not. 

Thus the four equations estimated, all ver- 
sions of (4), were (omitting the time argu- 
ment): 

log Y*= a + blogJ + clogL; (14) 
log Y* a + b logJ + clogL + dt; (15) 
log (Y*/L) a + b log (J/L); (16) 

and 
log (Y*/L) a + b log (J/L) + dt. (17) 

We now turn to the question of how the 
performance of such estimated aggregate pro- 
duction functions ought to be measured. 

The first such measure is an obvious one; it 
is the R2 of the regressions. While we should 
not expect such correlations to be low so long 
as aggregate capital, J, is correlated with its 
components, it remains a necessary feature of 
the good performance of an aggregate produc- 
tion function that when fitted to aggregate out- 
put and input data it yield a close fit in explain- 
ing the dependent variable.14 

A second natural measure is relevant to the 
equations in which constant returns is not im- 
posed. The underlying structure certainly is 
constant returns. It is therefore of some in- 
terest to know whether or not an aggregate 
production function when estimated from data 
generated by that structure reveals that fact. 

Somewhat similarly, in the Hicks experi- 
ments, there is underlying Hicks-neutral tech- 
nical change and in the capital experiments 
there is not. It is of some interest to see wheth- 
er this will be detected in the aggregate esti- 
mates. 

Further, the underlying firm production func- 
tions are all in fact Cobb-Douglas with or with- 
out Hicks-neutral technical change. In general, 
we would expect a well-performing aggregate 
Cobb-Douglas production function to give pa- 
rameter estimates which are averages of the 
individual firm production function parameters. 

All of this, however, while interesting, is 
subsidiary to our main focus, that of the ex- 
planation of wages. Our principal performance 
measure, therefore, will measure the degree of 
success of the aggregate production functions 
in explaining the generated wage data, to which 
they are not directly fitted. What measure 
should be used? 

The measure which first naturally suggests 
itself is the squared coefficient of determina- 
tion: 

z (w(t) -wt) 
12= 1_ t , (18) 

> (w(t) - ) 

t i where w (t) is the actual wage, w't) the pre- 
14 R' is a sensible measure of goodness of fit here. 

t-statistics are not, since the problem is nonstochastic. 
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dicted wage,"' and zT the average actual wage 
over the twenty years. This has the usual prop- 
erty of having an upper bound of unity, al- 
though it is not bounded below by zero (or 
anything else). 

A little thought (and some hindsight), how- 
ever, suggests that this is not a terribly appro- 
priate measure for our purposes. There is no 
reason why our experiments cannot generate 
economies in which the variance of wages is 
very small. This would make P also very 
small, even if predicted wages came very close 
to actual ones. This possibility occurs in prac- 
tice in a way which is convincing as to the inap- 
propriateness of J2 . There are numerous cases 
in which, when performing a given series of ex- 
periments which differ only in relative growth 
rates (FL) but have identical initial conditions 
and other parameters, J2 suddenly becomes very 
negative at a particular value of At while being 
satisfactorily positive on both. sides of that 
value. Examination of the histories of the cor- 
responding economies reveals that for smaller 
values of At, say, wages are going up and, for 
larger values, they are going down, while, for 
the critical value of t,, they are nearly constant. 
Predicted wages pretty much duplicate that 
behavior, and the numerator of the fraction in 
(18) stays small, so that the erratic behavior 
of J2 is entirely due to the behavior of the 
denominator and the accident that wages hap- 
pen to have a small variance in a particular 
experiment. 

This naturally suggests the use of the nu- 
merator in (18) as itself the measure of perfor- 
mance as to wage explanation, and the natural 
form in which to use this is as the root-mean- 
square prediction error. Since this is not scale 
free, we used instead the relative roo!t-mean- 
square error, calculated as: 

4 (1/20) (w(t) w 
S - ((20) 

as our primary measure of performance.'6 

V Subsidiary Results 

As more or less suspected, R2 turns out not 
to be a particularly sensitive measure of per- 
formance. Essentially without exception, it is 
very high, generally around 0.99. This holds 
for all four of the regressions (14)-(17) and 
all sets of experiments. It reflects the fact 
that with everything moving in trends of one 
sort or another, an excellent fit is obtained 
regardless of misspecification of different sorts. 

The estimated coefficients, however, do re- 
flect misspecification in different ways. Without 
going into great detail, the following comments 
convey the general impression given. 

Consider first cases in which the correct 
specification as to the presence or absence of 
Hicks-neutral technical change is made. In 
such cases, it often makes a great difference 
whether or not constant returns is imposed, 
particularly in experiments where things are 
moving about. Not only do the non-constant 
returns regressions (14) and (15) often yield 
estimates of the degree of homogeneity (b+c) 
which are widely different from unity, but also 
there are numerous (but less frequent) cases in 
which the individual coefficients are ridiculous, 
including many cases in which marginal prod- 
ucts are estimated as negative. On the other 
hand, there are many cases in which the indi- 
vidual coefficients are plausible and some in 
which they add up to something around unity. 

If constant returns is imposed, however, such 
wild behavior essentially completely disappears 
and the exponents of labor and capital in the 
aggregate regressions almost always lie in the 
range covered by the corresponding firm coeffi- 
cients. 

One obvious explanation for such behavior 
is that of multicollinearity. J(t) is composed 
of several variables trending at different rates 
with small random fluctuations; L(t) is such 

" There is an apparent issue as to how zv(t) should be 
computed. From (4), 

!w(0) = a(Y*(t)/L(t)), (19) 
where a, of course, is estimated from the aggregate regres- 
sions (14)-(17). Should Y*(t) in (19) be taken as the 
actual value of Y*(t) or the predicted value? Fortunately, 

R2 for all the regressions is so very high that it turns out 
to make no practical difference which one is used. In the 
results reported below, we used the actual value of Y*(t). 

"6 There are other associated measures which might be 
used. One might, for example, regress w(t) on z2(t) and 
observe whether the constant term was close to zero and 
the slope close to unity as well as computing the correlation 
coefficient. While we did in fact do this, the results did 
not seem to provide much information not already con- 
tained in the relative root-mean-square error and they are 
not reported here. In any case, the relative root-mean- 
square error seems the most natural single measure. 
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a trend variable with larger fluctuations. It is 
not then too surprising that when both log J(t) 
and log L(t) appear in the regressions, partic- 
ularly when t itself does, results as to individ- 
ual coefficients look peculiar. When only log 
(J(t)IL(t)) appears, one would expect to do 
better in this respect. Still, there is in many 
cases nothing like exact collinearity so this may 
only be part of the explanation. 

Multicollinearity may also play some part in 
the explanation of a second phenomenon, this 
one relating to the correct or incorrect specifi- 
cation of the presence of Hicks-neutral tech- 
nical change. Concentrating on the constant 
returns results, we find, as one might expect, 
that when dealing with Hicks experiments it 
makes a considerable difference whether or not 
we allow for technical change at the aggregate 
level. If we do, then results look plausible and, 
for low levels of movement, the relative root- 
mean-square error in the prediction of wages 
(S) is low. If no allowance for technical change 
is made in such cases, results are far worse. 

What is somewhat more surprising than this, 
however, is the fact that in the capital experi- 
ments when there is no underlying technical 
change, results are nevertheless somewhat bet- 
ter when technical change at the aggregate level 
is assumed to be absent than when allowance 
is made for its possible presence. Despite the 
fact that, in all such cases, the estimated coeffi- 
cient of time in the aggregate regression turns 
out to be very small in absolute value, there 
is a definite deterioration in relative root-mean- 
square error, S, as compared with the same 
cases with that coefficient set equal to zero in 
the estimation of the aggregate production 
function. Conceivably, this is due to the fact 
that there are only 20 observations to begin 
with, so that the use of one degree of freedom 
to estimate a zero coefficient is not a trivial loss 
of efficiency. This may particularly be so when 
the estimation of that coefficient involves the 
introduction of time, a variable which makes 
the regressions pretty collinear, even with con- 
stant returns. 

Similar considerations may also explain why 
the Hicks experiments tend to have higher root- 
mean-square errors than the corresponding cap- 
ital experiments in the results below. 

Given all this, our analysis of the results as 

to wage prediction proceeded by taking, in each 
experiment, the wage prediction generated by 
the best of the aggregate production functions 
estimated, as indicated by the above consid- 
erations. These were the predictions generated 
by the estimates imposing constant returns 
and making the correct specification as to the 
presence or absence of Hicks-neutral technical 
change. In general, these were also the best 
wage predictions in terms of relative root-mean- 
square error. Thus the results in the next sec- 
tion are based on (16) for the capital experi- 
ments and on ( 17) for the Hicks experiments. 

VI The Principal Results: Variance of Labor's 
Share and the Prediction of Wages 

We now come to the principal focus of the 
experiments, the prediction of wages as mea- 
sured by S. It is perfectly clear that there are 
some cases in which we would naturally expect 
S to be small and some in which we would ex- 
pect it to be large. 

Certainly, for the cases in which jL is zero 
or almost zero, we would expect an aggregate 
production function to do reasonably well. For 
such cases, the individual capital stocks are 
roughly proportional to each other and any 
average of them will provide a good capital 
index. It is true that the correct form of the 
aggregate production function in such cases 
will not be Cobb-Douglas,17 but one would ex- 
pect an aggregate Cobb-Douglas to do pretty 
well, nevertheless. We shall refer to such cases 
as "low-movement" cases. 

One would also expect such good perfor- 
mance in quite an opposite case. Suppose that 
one of the firms starts out very large relative 
to the others; suppose also that the large firm 
is growing relative to the others. Then the en- 
tire economy is largely dominated by that firm 
and output and wages are largely determined 
by its production function. In such a case, 
treating the economy as though it were just one 
big firm is obviously not going to be far off the 
mark. Note that this will be true whether the 
large and growing firm has a growing capital 

17 The correct form is the sum of the individual firms' 
production functions, with each Ki(t) set equal to ksJ(t) 
and the Li(t) determined by the efficiency conditions. This 
last makes the writing of the aggregate production function 
in closed form unhelpful, at best. 
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stock or a growing technical efficiency param- 
eter. 

This sort of case is most obvious when there 
are only two firms and one of them is much 
bigger than the other; there are similar cases, 
however, for n = 4 or n = 8. In the two-group 
capital or two-group Hicks experiments (but 
not in the fanning experiments), the high-a 
firms are treated as a group, as are the low-a 
firms. The firms in each group start out large 
or small together; they also grow proportionally 
(a slight exception being the two-group Hicks 
experiments where identical growth rates are 
adjusted by slightly different capital exponents 
for different firms). Considering just one of 
the groups of firms, then, it forms a low-move- 
ment case and we should expect to be able to 
treat it more or less as a single unit. If one of 
those units is big and growing relative to the 
other, however, this closely parallels the case 
of two firms with one dominating the other. 
Again in such cases we should expect that 
treating the entire economy as a single firm 
gives fairly good results. 

We shall refer to such cases as "specializa- 
tion cases," observing that for n > 2, they have 
some aspects of low-movement cases as well. 
There are not too many such cases even for the 
two-group experiments. For the fanning experi- 
ments in which n > 2,18 there can be no cases 
which are exactly specialization cases as just 
defined. On the other hand, when one group of 
firms starts out very big and grows relative to 
the other, then, even in the fanning cases, it is 
misleading to take the relevant rate of growth 
as that of the big firms relative to the small 
ones. The big firms dominate throughout and 
what matters is the rates of growth of those 
firms relative to each other. For n = 4, this is 
/1; for n = 8, this is 3t (taking the maximum 
of such relative growth rates). In the results 
below, we have accounted for this by indexing 
such cases under growth rates ,u and 3,u instead 
of 3,u and 7,4, respectively, as would be done 
were all n firms treated symmetrically. This 
means, for example, that a fanning case in 
which there are four firms with two of them 
big and growing, with the growth rates of the 
four firms being 0, 0.01, 0.02, and 0.03, is 

treated as a case of 0.01 relative growth rather 
than a case of 0.03 relative growth in. the tables 
below and is thus counted with the low-move- 
ment cases. 

There is also a large class of cases in which 
it is obvious that the wage predictions of the 
estimated aggregate production functions will 
be poor. Since those predictions are from Cobb- 
Douglas functions, they involve the prediction 
that labor's share of total output will be con- 
stant. If, in fact, labor's share has a high 
variance in a given experiment one would hard- 
ly expect such wage predictions to be accurate. 

While it is thus obvious that a low variance 
of labor's share is a necessary condition for a 
good set of wage predictions, it is by no means 
obvious that this is also a sufficient condition. 
Yet, by and large, we find this to be the case. 
Even excluding the a priori obvious low-move- 
ment and specialization cases, we find that a 
low variance of labor's share is associated with 
a low relative root-mean-square error in wage 
prediction. This phenomenon thus occurs even 
in cases in which there is high relative move- 
ment and no domination by a set of propor- 
tionally growing firms, so that the underlying 
technical relationships do not look anything 
like an aggregate Cobb-Douglas (or indeed, 
any aggregate production function) in any 
sense. Cases which seem a priori similar to 
these generate a relatively high variance of 
labor's share and do badly on the relative root- 
mean-square error criterion. 

We now present the results, postponing heu- 
ristic argument as to the plausibility of this 
finding to the next. section. 

Each of tables 2-11 gives the joint distribu- 
tion of the relative root-mean-square error of 
the wage predictions (S) and the standard de- 
viation of labor's share. The latter, for com- 
parability, is divided into intervals which are 
0.00375 in absolute value, this being 0.5 per 
cent of 0.75 which is the overall mean of labor's 
share in all the experiments. Columns are thus 
labelled "Relative Standard Deviation of La- 
bor's Share." Table 2 summarizes all capital 
experiments; and table 3, all Hicks experi- 
ments. Tables 4 and 5 provide the same sum- 
mary deleting specialization cases and all cases 
in which the relevant growth rates are zero or 
one per cent. Tables 6-8 and. 9-11 give the 

For n = 2, fanning experiments are identical to two- 
group experiments. 

This content downloaded from 193.54.67.91 on Fri, 19 Jul 2013 12:06:34 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


AGGREGATE PRODUCTION FUNCTIONS AND WAGES 3 15 

TABLE 2.- SUMMARY OF ALL CAPITAL EXPERIMENTS 

Relative 
Stand. Dev. of 
Labor's Share 

(per cent) 0.0-0.5 0.5-1.0 1.0-1.5 1.5-2.0 2.0-2.5 2.5-3.0 Above 3.0 

Rel. Root-Mean- 
Square Error in 
Predicting Wages 
(per cent) 
0.0- 0.5 

Two-Group 87 
Fanning 52 

Total 108 
0.5- 1.0 

Two-Group 2 7 30 1 
Fanning 8 28 1 

Total 34 47 1 
1.0- 1.5 

Two-Group 4 17 2 
Fanning 6 17 1 

Total 10 29 2 
1.5- 2.0 

Two-Group 0 0 10 2 
Fanning 1 8 6 3 

Total 1 8 13 3 
2.0- 3.0 

Two-Group 0 0 1 5 5 1 
Fanning 1 3 5 5 7 4 

Total 1 3 5 7 10 4 
3.0- 4.0 

Two-Group 0 0 1 3 
Fanning 1 2 0 11 

Total 1 2 1 13 
4.0- 5.0 

Two-Group 0 0 1 
Fanning 1 1 8 

Total 1 1 8 
5.0-10.0 

Two-Group 0 1 
Fanning 2 14 

Total 2 14 
10.0-20.0 

Two-Group 0 
Fanning 1 

Total 1 
Above 20 

Two-Group 
Fanning 

Total 

Items sometimes do not add to totals because each two-firm experiment was counted in both categories, but added in to total only once. 

results broken down by growth rates (for rates 
higher than one per cent),'9 but still excluding 
pure specialization cases. 

In all cases, growth rates are taken as pu so 
that Hicks cases are grouped with capital cases 
with equivalent growth rates. In the fanning 
cases, the relevant growth rate is taken to be 
that of the fastest growing firm, except in cases 

in which one group of firms is large and grow- 
ing, in which case, as noted above, it is taken 
to be the growth rate of the fastest-growing 
large firm relative to the slowest-growing large 
firm. 

Each box in each of the capital tables has 
three entries, corresponding to two-group, fan- 
ning, and all experiments, respectively; each 
box in each of the Hicks tables has four entries, 
corresponding to preliminary two-group, final 
two-group, fanning, and all experiments, respec- 

19 The one per cent growth rate cases also exhibit the 
same phenomenon as do finer breakdowns of the other 
results. 
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TABLE 3.- SUMMARY OF ALL HICKS EXPERIMENTS 

Relative 
Stand. Dev. of 
Labor's Share 

(per cent) 0.0-0.5 0.5-1.0 1.0-1.5 1.5-2.0 2.0-2.5 2.5-3.0 Above 3.0 

Rel. Root-Mean- 
Square Error in 
Predicting Wages 
(per cent) 
0.0- 0.5 

Prelim Two-Group 63 1 1 
Two-Group 61 0 0 

Fanning 33 0 0 
Total 138 1 1 

0.5- 1.0 
Prelim Two-Group 30 15 

Two-Group 21 12 
Fanning 12 12 

Total 55 33 
1.0- 1.5 

Prelim Two-Group 10 5 3 
Two-Group 11 8 3 

Fanning 5 8 1 
Total 24 18 6 

1.5- 2.0 
Prelim Two-Group 3 4 5 3 

Two-Group 9 2 6 0 
Fanning 1 0 7 1 

Total 12 6 15 4 
2.0- 3.0 

Prelim Two-Group 5 5 7 2 3 1 
Two-Group 5 4 2 5 3 0 

Fanning 3 1 0 5 3 1 
Total 13 10 9 8 7 2 

3.0- 4.0 
Prelim Two-Group 0 3 0 3 1 1 1 

Two-Group 4 4 2 1 2 0 0 
Fanning 2 4 1 0 1 1 1 

Total 4 11 3 4 3 2 2 
4.0- 5.0 

Prelim Two-Group 0 2 1 1 1 1 
Two-Group 1 0 3 1 0 2 

Fanning 2 0 2 0 0 1 
Total 3 2 5 2 1 3 

5.0-10.0 
Prelim Two-Group 3 1 1 2 2 1 1 

Two-Group 0 5 2 5 2 3 2 
Fanning 2 8 3 2 3 2 5 

Total 5 11 5 8 5 4 7 
10.0-20.0 

Prelim Two-Group 0 0 1 1 4 
Two-Group 1 0 0 2 2 

Fanning 4 6 4 1 6 
Total 5 6 5 4 11 

Above 20 
Prelim Two-Group 0 0 0 0 0 0 0 

Two-Group 0 1 0 0 0 0 1 
Fanning 1 0 8 5 2 3 25 

Total 1 1 8 5 2 3 25 

Items sometimes do not add to totals because each two-firm experiment was counted in both categories, but added in to total only once. 

tively. The total of the entries for the individ- 
ual experiment types is not always that given 
in the last line of the box because final two- 

group and fanning experiments are identical for 
n = 2 and are counted in each category sep- 
arately but included in the total only once. 
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TABLE 4. -SUMMARY OF NON-TRIVIAL CAPITAL EXPERIMENTS 

Relative 
Stand. Dev. of 
Labor's Share 

(per cent) 0.0-0.5 0.5-1.0 1.0-1.5 1.5-2.0 2.0-2.5 2.5-3.0 Above 3.0 

Rel. Root-Mean- 
Square Error in 
Predicting Wages 
(per cent) 
0.0- 0.5 

Two-Group 24 
Fanning 21 

Total 36 
0.5- 1.0 

Two-Group 17 22 
Fanning 6 23 

Total 22 37 
1.0- 1.5 

Two-Group 3 9 
Fanning 6 13 

Total 9 19 
1.5- 2.0 

Two-Group 0 0 3 0 
Fanning 1 8 3 1 

Total 1 8 5 1 
2.0- 3.0 

Two-Group 0 0 1 4 5 1 
Fanning 1 3 5 4 7 4 

Total 1 3 5 6 10 4 
3.0- 4.0 

Two-Group 0 0 1 3 
Fanning 1 2 0 11 

Total 1 2 1 13 
4.0- 5.0 

Two-Group 0 0 1 
Fanning 1 1 8 

Total 1 1 8 
5.0-10.0 

Two-Group 0 1 
Fanning 2 14 

Total 2 14 
10.0-20.0 

Two-Group 0 
Fanning 1 

Total 1 
Above 20 

Two-Group 
Fanning 

Total 

Does not include growth rates of -1 to + 1 per cent or pure (two-group) specialization cases. Items sometimes do not add to totals 
because each two-firm experiment was counted in both categories, but added in to total only once. 

The sparseness of entries in the upper right- 
hand corners of the tables corresponds to the 
obvious fact that an aggregate Cobb-Douglas 
can not give a good explanation of wages when 
the variance of labor's share is high. The point 
of interest is the sparseness of entries in the 
lower left-hand corners, and the density of 
entries in the upper left-hand corners showing 
the cases in which the variance of labor's share 
is low and (for the upper corners) the relative 
root-mean-square error of wage prediction low. 

This phenomenon is particularly marked, if one 
observes that the left-hand axis is rather finely 
subdivided at the upper end, so that the first 
four boxes only get up to 2 per cent relative 
root-mean-square error and the first seven 
boxes only up to 5 per cent, but it generally 
appears even within the first few boxes.20 

20 It does not seem worthwhile to compute a formal test 
of association. The most obvious chi-square test would 
involve the guaranteed emptiness of the upper right-hand 
corner, a point of little interest. Moreover, the appearance 
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TABLE 5. SUMMARY OF NON-TRIVIAL HICKS EXPERIMENTS 

Relative 
Stand. Dev. of 
Labor's Share 

(per cent) 0.0-0.5 0.5-1.0 1.0-1.5 1.5-2.0 2.0-2.5 2.5-3.0 Above 3.0 

Rel. Root-Mean- 
Square Error in 
Predicting Wages 
(per cent) 
0.0- 0.5 

Prelim Two-Group 23 1 1 
Two-Group 11 0 0 

Fanning 10 0 0 
Total 40 1 1 

0.5- 1.0 
Prelim Two-Group 19 11 

Two-Group 9 3 
Fanning 6 7 

Total 30 18 
1.0- 1.5 

Prelim Two-Group 7 4 2 
Two-Group 8 7 1 

Fanning 4 7 0 
Total 18 15 3 

1.5- 2.0 
Prelim Two-Group 3 4 1 0 

Two-Group 7 2 3 0 
Fanning 1 0 5 1 

Total 10 6 7 1 
2.0- 3.0 

Prelim Two-Group 3 5 4 2 2 1 
Two-Group 4 4 2 1 1 0 

Fanning 2 1 0 2 1 1 
Total 9 10 6 4 4 2 

3.0- 4.0 
Prelim Two-Group 0 3 0 2 1 1 1 

Two-Group 1 4 0 0 2 0 0 
Fanning 0 4 1 0 1 1 1 

Total 1 11 1 2 3 2 2 
4.0- 5.0 

Prelim Two-Group 0 2 0 1 1 1 
Two-Group 1 0 1 1 0 2 

Fanning 2 2 1 0 0 1 
Total 3 2 2 2 1 3 

5.0-10.0 
Prelim Two-Group 3 1 0 2 1 1 1 

Two-Group 0 5 1 2 1 3 2 
Fanning 2 8 3 1 2 2 5 

Total 5 11 3 4 3 4 7 
10.0-20.0 

Prelim Two-Group 0 0 0 1 4 
Two-Group 1 0 0 2 2 

Fanning 4 6 4 1 6 
Total 5 6 4 4 11 

Above 20 
Prelim Two-Group 0 0 0 0 0 0 0 

Two-Group 0 1 0 0 0 0 1 
Fanning 1 0 8 5 2 3 25 

Total 1 1 8 5 2 3 25 

Does not include growth rates of -1 to +1 per cent or pure (two-group) specialization cases. Items sometimes do not add to totals 
because each two-firm experiment was counted in both categories, but added in to total only once. 

Obviously, the results of the capital experi- 
ments fit the described pattern extremely tight- 
ly, there being few cases much off the principal 
diagonals. The results of the Hicks cases also 

of very many cases in the upper left-hand corner would be 
important regardless of the rest of the table. In any case, 
the pattern in the results is strong enough to be obvious at 
a glance. 

This content downloaded from 193.54.67.91 on Fri, 19 Jul 2013 12:06:34 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


AGGREGATE PRODUCTION FUNCTIONS AND WAGES 319 

TABLE 6. CAPITAL EXPERIMENTS, 2-5 PER CENT GROWTH 

Relative 
Stand. Dev. of 
Labor's Share 

(per cent) 0.0-0.5 0.5-1.0 1.0-1.5 1.5-2.0 2.0-2.5 2.5-3.0 Above 3.0 

Rel. Root-Mean- 
Square Error in 
Predicting Wages 
(per cent) 
0.0- 0.5 

Two-Group 24 
Fanning 19 

Total 34 
0.5- 1.0 

Two-Group 17 22 
Fanning 3 14 

Total 19 28 
1.0- 1.5 

Two-Group 3 9 
Fanning 2 5 

Total 5 11 
1.5- 2.0 

Two-Group 3 0 
Fanning I I 

Total 3 1 
2.0- 3.0 

Two-Group 1 4 5 1 
Fanning 1 3 4 2 

Total 1 5 7 2 
3.0- 4.0 

Two-Group 1 3 
Fanning 0 2 

Total 1 4 
4.0- 5.0 

Two-Group I 
Fanning I 

Total 1 
5.0-10.0 

Two-Group I 
Fanning I 

Total 1 
10.0-20.0 

Two-Group 
Fanning 

Total 
Above 20 

Two-Group 
Fanning 

Total 

Does not include pure (two-group) specialization cases. 

fit it, particularly looking at the number of 
cases in each box and not merely at whether or 
not the box is empty, but not so strikingly well 
as the capital experiment results. This is prob- 
ably due to the greater problems of multicol- 
linearity encountered in the aggregate regres- 
sions in the Hicks experiments, as we shall 
discuss in the next section. 

VII Heuristics 

Why should an aggregate Cobb-Douglas do 

well in explaining wages when labor's share has 
a small variance? With the benefit of hindsight 
it is possible to give a fairly convincing heu- 
ristic explanation as to the reasonableness of 
our principal result for these experiments, show- 
ing that it is, in part, a consequence of the 
subsidiary results discussed earlier. Indeed, 
that heuristic explanation strikes me as so con- 
vincing that I hesitate to give it lest the reader 
mistake it for a proof and believe that all the 
experiments were unnecessary. In experiments 
such as this in which the data are all internally 
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TABLE 7. CAPITAL EXPERIMENTS, 6-10 PER CENT GROWTH 

Relative 
Stand. Dev. of 
Labor's Share 

(per cent) 0.0-0.5 0.5-1.0 1.0-1.5 1.5-2.0 2.0-2.5 2.5-3.0 Above 3.0 

Rel. Root-Mean- 
Square Error in 
Predicting Wages 
(per cent) 
0.0- 0.5 

Two-Group 0 
Fanning 2 

Total 2 
0.5- 1.0 

Two-Group 0 0 
Fanning 2 8 

Total 2 8 
1.0- 1.5 

Two-Group 0 0 
Fanning 4 4 

Total 4 4 
1.5- 2.0 

Two-Group 0 0 
Fanning 1 1 

Total 1 1 
2.0- 3.0 

Two-Group 0 0 
Fanning 2 2 

Total 2 2 
3.0- 4.0 

Two-Group 0 
Fanning 5 

Total 5 
4.0- 5.0 

Two-Group 0 
Fanning 1 

Total 1 
5.0-10.0 

Two-Group 
Fanning 

Total 
10.0-20.0 

Two-Group 
Fanning 

Total 
Above 20 

Two-Group 
Fanning 

Total 

Does not include nure (two-groun) specialization cases. 

generated with little stochastic element, any 
organizing principle for the results which can 
be made to seem very reasonable will also mis- 
leadingly appear afterwards to have been de- 
ducible without the experiments. 

Consider the polar case in which labor's share 
just happens to be constant. Call that share a. 
Then wages and output per man are certainly 
related by: 

w(t) J(Y*(t)/L(t)) (21) 
We have already noted, however, that our re- 
gressions invariably give an extremely close fit 

to log (Y*(t) L(t)), so that we would expect 
to do well in explaining wages in such a case 
with labor's share constant, provided that we 
obtained a decent estimate of a. 

It is clear, however, that since the marginal 
product of labor is equal to w(t) in every firm: 

n 

- __w(t)L (t) z= w)Li(t 

a== Y* (t) n 

Y*j(t) 
it 1 
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TABLE S. - CAPITAL EXPERIMENTS, 11-35 PER CENT GROWTH 

Relative 
Stand. Dev. of 
Labor's Share 

(per cent) 0.0-0.5 0.5-1.0 1.0-1.5 1.5-2.0 2.0-2.5 2.5-3.0 Above 3.0 

Rel. Root-Mean- 
Square Error in 
Predicting Wages 
(per cent) 
0.0- 0.5 

Two-Group 
Fanning 

Total 
0.5- 1.0 

Two-Group 0 0 
Fanning 1 1 

Total 1 1 
1.0- 1.5 

Two-Group 0 
Fanning 4 

Total 4 
1.5- 2.0 

Two-Group 0 0 0 
Fanning 1 7 1 

Total 1 7 1 
2.0- 3.0 

Two-Group 0 0 0 0 0 0 
Fanning 1 3 2 1 1 2 

Total 1 3 2 1 1 2 
3.0- 4.0 

Two-Group 0 0 0 
Fanning 1 2 4 

Total 1 2 4 
4.0- 5.0 

Two-Group 0 0 0 
Fanning 1 1 6 

Total 1 1 6 
5.0-10.0 

Two-Group 0 0 
Fanning 2 13 

Total 2 13 
10.0-20.0 

Two-Group 0 
Fanning 1 

Total 1 
Above 20 

Two-Group 
Fanning 

Total 

Does not include pure (two-group) specialization cases. 

n 

ai (t) 
L, Y i(t) 

=1 
n 

,J, aiY*i(t) 

i= 1 
n i (22) 

y*i(t) 
i=wl 

where Y*i(t) is the output produced by the ith 

firm when labor has been efficiently allocated. 
Thus a is a weighted average of the individual 
ac, the weights being proportional to the indi- 
vidual firm outputs.2' We have already seen, 
however, that the estimate of labor's share 
given by the aggregate Cobb-Douglas a, like 

21 This shows that labor's share will be roughly constant 
if relative outputs are roughly constant, which will occur, for 
example, if the 3 per cent labor trend, given the coefficients, 
just happen to offset the other trends because increasing 
amounts of labor are assigned to relatively slow growing 
firms. If n_ 2, such rough constancy of relative outputs 
is the only way in which labor's share can be roughly con- 
stant; for n > 2, there are other ways. 
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TABLE 9. -HICKS EXPERIMENTS, 2-5 PER CENT GROWTH 

Relative 
Stand. Dev. of 
Labor's Share 

(per cent) 0.0-0.5 0.5-1.0 1.0-1.5 1.5-2.0 2.0-2.5 2.5-3.0 Above 3.0 

Rel. Root-Mean- 
Square Error in 
Predicting Wages 
(per cent) 
0.0- 0.5 

Prelim Two-Group 10 
Two-Group 11 

Fanning 10 
Total 27 

0.5- 1.0 
Prelim Two-Group 5 3 

Two-Group 9 3 
Fanning 5 5 

Total 15 8 
1.0- 1.5 

Prelim Two-Group 1 1 0 
Two-Group 8 7 1 

Fanning 3 4 0 
Total 11 9 1 

1.5- 2.0 
Prelim Two-Group 0 0 0 

Two-Group 7 2 3 
Fanning 1 0 2 

Total 7 2 3 
2.0- 3.0 

Prelim Two-Group 0 0 1 1 0 0 
Two-Group 4 4 2 1 1 0 

Fanning 2 0 0 1 1 1 
Total 6 4 3 2 2 1 

3.0- 4.0 
Prelim Two-Group 0 0 0 1 0 

Two-Group 1 4 0 0 2 
Fanning 0 1 1 0 1 

Total 1 5 1 1 2 
4.0- 5.0 

Prelim Two-Group 0 0 0 0 
Two-Group 1 1 1 2 

Fanning 1 0 0 1 
Total 2 1 1 2 

5.0-10.0 
Prelim Two-Group 0 0 1 0 0 0 

Two-Group 5 1 2 1 3 2 
Fanning 7 1 1 2 2 1 

Total 9 1 3 2 3 2 
10.0-20.0 

Prelim Two-Group 0 0 0 0 
Two-Group 1 0 2 2 

Fanning 0 1 1 2 
Total 1 1 3 3 

Above 20 
Prelim Two-Group 0 0 

Two-Group 1 1 
Fanning 0 2 

Total 1 2 

Does not include pure (two-group) specialization cases. 

the other parameters, is usually within the range 
of the corresponding micro-parameters, in this 
case the aj, so that it is plausible that when 
labor's share is constant, the estimate of a will 

come close to a (although the estimated a need 
not be a weighted average of the aj and does 
not have the same weights as does a). 

It thus follows from the success of the aggre- 
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TABLE 10. -HICKS EXPERIMENTS, 6-10 PER CENT GROWTH 

Relative 
Stand. Dev. of 
Labor's Share 

(per cent) 0.0-0.5 0.5-1.0 1.0-1.5 1.5-2.0 2.0-2.5 2.5-3.0 Above 3.0 

Rel. Root-Mean- 
Square Error in 
Predicting Wages 
(per cent) 
0.0- 0.5 

Prelim Two-Group 10 
Two-Group 0 

Fanning 0 
Total 10 

0.5- 1.0 
Prelim Two-Group 5 1 

Two-Group 0 0 
Fanning 1 2 

Total 6 3 
1.0- 1.5 

Prelim Two-Group 1 1 
Two-Group 0 0 

Fanning 1 3 
Total 2 4 

1.5- 2.0 
Prelim Two-Group 1 0 0 

Two-Group 0 0 0 
Fanning 0 2 1 

Total 1 2 1 
2.0- 3.0 

Prelim Two-Group 1 0 1 
Two-Group 0 0 0 

Fanning 1 1 0 
Total 2 1 1 

3.0- 4.0 
Prelim Two-Group 0 1 0 0 

Two-Group 0 0 0 0 
Fanning 3 0 1 1 

Total 3 1 1 1 
4.0- 5.0 

Prelim Two-Group 0 1 
Two-Group 0 0 

Fanning 1 0 
Total 1 1 

5.0-10.0 
Prelim Two-Group 0 0 1 0 

Two-Group 0 0 0 0 
Fanning 2 1 0 3 

Total 2 1 1 3 
10.0- 20.0 

Prelim Two-Group 0 0 0 
Two-Group 0 0 0 

Fanning 2 1 2 
Total 2 1 2 

Above 20 
Prelim Two-Group 0 0 0 

Two-Group 0 0 0 
Fanning 1 1 1 

Total 1 1 1 

Does not include pure (two-group) specialization cases. 

gate regressions in explaining output per man 
and the plausible appearance of a as within the 
range of the a, that wages will tend to be well 

predicted when labor's share is roughly con- 
stant. Indeed, the exceptions to this general 
rule observed in the tables reporting the Hicks 
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TABLE 11. HICKS EXPERIMENTS, 11-35 PER CENT GROWTH 

Relative 
Stand. Dev. of 
Labor's Share 

(per cent) 0.0-0.5 0.5-1.0 1.0-1.5 1.5-2.0 2.0-2.5 2.5-3.0 Above 3.0 

Rel. Root-Mean- 
Square Error in 
Predicting Wages 
(per cent) 
0.0- 0.5 

Prelim Two-Group 3 1 1 
Two-Group 0 0 0 

Fanning 0 0 0 
Total 3 1 1 

0.5- 1.0 
Prelim Two-Group 9 7 

Two-Group 0 0 
Fanning 0 0 

Total 9 7 
1.0- 1.5 

Prelim Two-Group 5 2 2 
Two-Group 0 0 0 

Fanning 0 0 0 
Total 5 2 2 

1.5- 2.0 
Prelim Two-Group 2 4 1 

Two-Group 0 0 0 
Fanning 0 0 1 

Total 2 4 2 
2.0- 3.0 

Prelim Two-Group 3 4 3 1 1 1 
Two-Group 0 0 0 0 0 0 

Fanning 0 0 0 0 0 0 
Total 3 4 3 1 1 1 

3.0- 4.0 
Prelim Two-Group 3 1 1 1 

Two-Group 0 0 0 0 
Fanning 3 0 0 0 

Total 3 1 1 1 
4.0- 5.0 

Prelim Two-Group 2 0 1 1 
Two-Group 0 0 0 0 

Fanning 2 1 0 0 
Total 2 1 1 1 

5.0-10.0 
Prelim Two-Group 3 1 0 1 1 1 

Two-Group 0 0 0 0 0 0 
Fanning 0 1 1 0 0 1 

Total 3 2 1 1 2 
10.0-20.0 

Prelim Two-Group 0 0 0 1 4 
Two-Group 0 0 6 0 0 

Fanning 2 4 4 0 2 
Total 2 4 4 1 6 

Above 20 
Prelim Two-Group 0 0 0 0 0 0 

Two-Group 0 0 0 0 0 0 
Fanning 1 7 4 2 3 22 

Total 1 7 4 2 3 22 

Does not include pure (two-group) specialization cases. 

experiments are typically cases in which the 
estimated a fails to lie in the indicated range, 
an occurrence which is probably due to the mul- 
ticollinearity which affects the Hicks regres- 

sions considerably more than the capital re- 
22 gressions. 

22 Recall that the results presented in the tables are those 
from regressions including t for the Hicks experiments and 
excluding t for the capital experiments. 
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This argument makes it very plausible that 
in these experiments rough constancy of labor's 
share should lead to a situation in which an 
aggregate Cobb-Douglas gives. generally good 
results including good wage predictions, even 
though the underlying technical relationships 
are not consistent with the existence of any 
aggregate production function and even though 
there is considerable relative movement in the 
underlying firm variables. Whether such an 
argument or such results have much bearing on 
a real world in which underlying relationships 
are more complicated and aggregation takes 
place over labor and output as well as capital 
is necessarily a somewhat open question., The 
suggestion is clear, however, that labor's share 
is not roughly constant because the diverse 
technical relationships of modern economies 
are truly representable by an aggregate Cobb- 
Douglas but rather that such relationships ap- 
pear to be representable by an aggregate Cobb- 
Douglas because labor's share happens to be 
roughly constant. If this is so, then the reason 
for such rough constancy becomes an important 
subject for further research.23 

It hardly needs, remarking that I have 
throughout dealt with constancy of labor's share 
and the Cobb-Douglas because that is the sim- 
plest case and not because it is the best-fitting 
aggregate production function in practice. If 
one rejects the Cobb-Douglas form in favor of 
an alternative aggregate production function, 
the suggestion (though less direct this time) 
remains that the apparent success of such a 
function in explaining wages occurs not because 
such functions really represent the true state of 
technology but rather because their implications 
as to the stylized facts of wage behavior agree 
with what happens to be going on anyway. The 
development of the CES, for example, began 
with the observation that wages are an in- 
creasing function of output per man and that 
the function involved can be approximated by 
one linear in the logarithms.24 The present 
results suggest (but only suggest) that the ex- 

planation of that wage-output per-man-relation- 
ship may not be in the existence of an aggregate 
CES but rather that the apparent existence of 
an aggregate CES may be explained by that 
relationship. 

23 It is hard to believe that it is explained along the lines 
of (22) by the existence of underlying Cobb-Douglas func- 
tions at the micro level together with rough constancy of 
relative outputs. Relative outputs do not seem very constant 
and, if they were, one would still want to know why. For 
a discussion of the reasons for apparent constancy, see Solow 
[llA]. 

"'See Arrow, Chenery, Minhas, and Solow [1]. 
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