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1. Introduction

Recent work has shown pretty clearly that the conditions under which

the production possibilities of a technologically diverse economy can be

represented by an aggregate production function are far too stringent to

be believable. This is true not only of the conditions for the existence

of an aggregate capital stock, where what is required is that the produc-

tion functions of individual firms differ at most by capital-augmenting

technical differences, but also of the existence of labor and output aggre-

gates, where every firm must hire the same proportions of each type of

labor and produce the same market basket of outputs. Moreover, the view

that aggregate production functions are only approximations anyway cannot

be sustained merely because such approximations are required only to hold

2
over a limited range of the variables.

Summarized in Fisher [7]. Relevant pieces include Diamond [2];

Fisher [3], [4], [5], and [6]; Gorman [8]; Solow [10] and [12];. and
Whitaker [13] and [14], among others.

2
See Fisher [6].
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Yet aggregate production functions apparently work nevertheless and

do so in a way which is prima facie not easy to explain. It is easy

enough to understand why, in economies in which things move more or less

together, a relationship giving an aggregate measure of output as depen-

dent on aggregate measures of capital and labor should give a good fit

when applied to the data. What is not so easy to explain is the fact

that the marginal product of labor in such an estimated relationship

appears to give a reasonably good explanation of wages as well. In its

simplest form, this puzzle is set by a remark which Solow once made to

me that had Douglas found labor's share to be 25% and capital's 75% in-

stead of the other way round, we would not now be discussing aggregate

production functions.

If the fact that estimated aggregate production functions explain

wages fairly well is a statistical artifact, then it is certainly not an

obvious one. There seems little reason why a function fitted to time

series of output and input data on an aggregate basis should have this

3
property; yet coincidence seems hard to swallow.

This paper reports on a simulation experiment which may cast some

light on this issue. Aggregate Cobb-Douglas production functions were

3
Phelps Brown [9] simply dismisses the time series results as poor

or implausible, largely because of their failure to allow for technical
change. In the light of Solow's seminal paper [11] and its successors,
this can no longer be done. Phelps Brown's arguments as to cross-section
estimates explain nothing about the time series results, nor do they show
why a cross-sectionally estimated production function should give reason-
able wage predictions for years far from that of the original cross sec-
tion.
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estimated for data produced by numerous fictitious and very simple eco-

nomies in which there was only one homogeneous output and one homogeneous

kind of labor but in which the conditions for the existence of an aggre-

gate capital stock were definitely violated . Various measures of the

performance of such a function were computed, among them measures of how

well the aggregate production function did in explaining the history of

wages. The histories of the economies were varied in a number of ways

and the performance measures compared to see under what circumstances the

aggregate production function did well.

Naturally, the results of such experiments can only be suggestive.

Moreover, since the entire economy is under the control of the investiga-

tor, any organizing principle which appears in the results and which can

be heuristically argued to be reasonable can also be argued, with the

benefit of hindsight to have been fairly obvious.

Nevertheless, the principal result of this investigation, while only

suggestive, is very suggestive indeed. It is obvious that, since a Cobb-

Douglas production function implies the constancy of labor's share, such

a function cannot be expected to explain wages well in an economy in

which that share is not constant. What is not obvious is that in econo-

mies in which labor's share happens to be roughly constant, even though

the true relationships are far from yielding an aggregate Cobb-Douglas,

such an aggregate production function will yield a good explanation of

wages. Yet this is generally what we find for our fictitious economies

and the relationship between the variance in labor's share and the good-

ness-of-fit of the wage predictions is close, although certainly not
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perfect

.

If such a result holds for other than our simplified and fictitious

economies, it has important implications. It suggests that the view that

the constancy of labor's share is due to the presence of an aggregate Cobb-

Douglas production function is mistaken. Causation runs the other way and

the apparent success of aggregate Cobb-Douglas production functions is due

to the relative constancy of labor's share. The explanation of such con-

stancy remains to be found. Our results suggest that should the forces

making for it suddenly change, then aggregate Cobb-Douglas production

functions would cease to give reasonable wage explanations.

In a word then, the answer suggested by the present results to Solow's

question is that an aggregate Cobb-Douglas production function estimated

from input and output data does well in wage prediction not because wages

are generated from it but because the behavior of labor's share just hap-

pens to approximate the central stylized fact generated by such a function,

even though the mechanism actually generating wages and output is rather

different. Such a view obviously has extensions to the performance of

aggregate production functions other than Cobb-Douglas.

2. The Model

Our economies each consist of n units which hire the same kind of

labor and produce the same kind of output. We shall refer to these units

as "firms," although they might equally well or better be thought of as

industries each of which consists of a number of identical firms. In our

experiments, n was taken to be 2, 4, or 8. Much higher numbers would have
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led to greatly increased computing time and the results do not suggest that

it would have made much difference.

Each firm has a different kind of capital stock and its technology is

embodied in that stock. Thus different firms have different production func-

tions and capital is not transferable among firms (although labor is) . The

ith firm's production function is given by:

(2.1) y.(t) = A.(t) L.(t)
ai K^t)

1""
1 (i = 1,..., n) .

Here, K. is the amount of the ith firm's capital; L. the amount of labor
l i

employed by the firm; and y .
, the amount of output it produces. Calendar

time is denoted by t (running from 1 to 20 in each economy) ; A. (t) is a

function of time representing disembodied Hicks-neutral technical change

(which, given the fact that the production functions are Cobb-Douglas, is

indistinguishable from disembodied factor-augmenting change) ; a . is a

parameter.

Cobb-Douglas production functions for individual firms were used both

because they allow great simplifications in the labor-allocation algorithm

described below and because they ought to provide the best chance for an

aggregate Cobb-Douglas to work well.

At any moment of time, the aggregate labor force employed is, of

course,

(2.2) L(t) = l L. (t)

i=l

Embodied technical change, of course, is, in a sense, what the

whole model is about

.
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Total output produced is

n

(2.3) Y(t) = Z y. (t)

i=l

However, whereas L(t) is one of the givens of the economy, Y(t) is not,

since it obviously depends on the way in which employment is allocated

to firms

.

Such allocation is performed so as to make total production effi-

cient. As would a perfect labor market or a socialist planning board,

the L.(t) are chosen each period so as to maximize Y(t), given L(t),

K, (t),..., K (t), A, (t),..., A (t), and (2.1) and (2.2). We denote
J. n 1 n

*
output so maximized as Y (t)

.

Now, it is not hard to show that if all the a. were the same, then

Y would be given by an aggregate Cobb-Douglas production function:

(2.4) Y*(t) = A(t) L(t)
a

J(t)
1_a

where J(t) depends only on the K. (t) and the A. (t) and not on L (t)

.

(This would not be true, incidentally, of Y(t).) The results on the

existence of aggregate production functions, already referred to, imply

that this will certainly not be the case if the a. are different for

different firms. Indeed, they show that there exists no_ aggregate pro-

duction function:

(2.5) Y*(t) = F(J(t), L(t), t)

2
in which J(t) is merely a capital index independent of labor. For each

2
See Fisher [3]
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economy, however, we ignore this and estimate an aggregate Cobb-Douglas

production function in the form (2.4) with J(t) chosen as about to be

described. As already stated, the relative performance of such estimated

functions is compared across economies.

A single experiment, then, consists of choosing values for the para-

meters and of generating a twenty-year time series for L(t), K. (t) , . . .

,

3
K (t) , and A, (t) , . . . , A (t) . For each year, the L.(t) are chosen so as
n i n l

4
to maximize Y(t) subject to (2.2). Given the labor assignments, wages

and capital rentals for the n different capital types are computed by

taking marginal products in the individual production functions. We de-

note by w(t) the resulting wage at time t and by r . (t) the marginal pro-
i

duct of the ith capital type at that time.

3
Note that the individual capital stocks are given exogenously.

4
This was done as follows, making use of the property that with

Cobb-Douglas production functions every L.(t) > 0. It is easy to write an

algorithm which equalizes (by iteration) the marginal product of labor in

any given pair of firms, given the total amount of labor employed by those
firms. When n = 2, this is all there is to it, since equality of marginal
product is obviously the condition for efficient allocation. For n > 2,

we first divided labor equally among all n firmo; then we took the total
labor assigned to firms 1 and 2 and reallocated it between the firms to

equalize marginal product. The next step took the labor then allocated to

firms 2 and 3 and reassigned it to them efficiently; then we went on to

firms 3 and 4, and so forth up to firms n-1 and n. The process was then

repeated starting at firms 1 and 2 and continued until all marginal pro-
ducts were equalized (approximately) . It is easy to prove convergence of
this algorithm and, although it is not particularly efficient, it did not
take a prohibitive amount of computer time for n = 8.
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Now, it is obvious from Euler's theorem that:

* n
(2.6) Y (t) = w(t) L(t) + E r.(t) K. (t) (t = 1 20).

i=l
X z

This means that at any moment of time, the sum of the right-hand side of

(2.6) makes an excellent capital index. The problem, of course, occurs

because the relative magnitudes of the r. (t) not only do not remain con-

stant over time but also are not independent of the magnitude of L (t)

;

this is the essence of the capital -aggregation problem.

Nevertheless, it seems clear that an aggregate production function

will do best if its capital index comes as close as possible to weighting

different capital goods by their rentals. Accordingly, we constructed

J(t) for use in (2.4) by

n
(2.7) J(t) = I r K (t) (t = 1,..., 20),

i=l
X

where

20

(2.8) r E (1/20) S r (t) (i = 1,..., n).
t=l

3. The Experiments: Detailed Description

Obviously, crucial questions are the choice of the parameters and

time series which define an experiment and the choice of measures of per-

formance of the aggregate production function. In the present section, we

discuss the former question, taking up the latter in the next section.

We begin with the crucial parameters of the production functions, a. .

As aggregate estimates for the United States tend to show a Cobb-Douglas
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exponent for labor of about .75, we chose the a around this value. In

one set of experiments, the a. were chosen in the range .7 — .8; in a

second, they were chosen in the range .6 — .9. In both cases, the n

individual a. were chosen so that a, was at the lower and a at the upper
l 1 n rr

endpoint of the range, with the remainder (if any) of the exponents uni-

formly spread over the range. Thus, for example, in the .6 — .9 case,

with n = 4, the exponents were .6, .7, .8, .9. Note that in all cases,

the unweighted average of the a. was kept constant at .75.

As already indicated, n was chosen at 2, 4, or 8. A little reflec-

tion, however, shows that changing the number of firms represented in

this model is not merely a matter of changing n, despite the terminology.

One has two choices in increasing the number of firms. The first of

these is to add firms without altering the set of a. to be examined.

Given constant returns and efficient labor allocation, however, adding a

firm with a labor exponent identical to that of an existing firm is equi-

valent to increasing the size of the existing one by giving it more capi-

tal stock. Since one of the other choices described below involves doing

just this, changes in n are not the only way in which the experiments re-

flect changes in the number of firms.

Aside from this, however, a change in n which is not merely equiva-

lent to an increase in firm size must involve a change in the set of a.

.

One can not merely change n alone. The way in which increases in n were

reflected in the set of a. has already been indicated. Note that whereas

the average a. is always the same, an increase in n involves a reduction

in the variance of the a. around their mean, other things equal. (Weight-
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ing by firm size, of course, that variance can increase when we increase

the number of firms by changing firm size at given a.; so can the weighted

mean.) An increase in n involves more differnet firms, but also involves

less polarization among firms.

The three sets of exogenously specified time profiles were all chosen

to be approximately exponential trends. Thus:

(3.1) log L(t) = X
Q
+ X

x
t + A

2
e
t

;

(3.2) log K
±
(t) = 6

iQ
+ Bn t + 6

i2
n
it

(i = l,...,n);

(3.3) log A
±
(t) = Y i0

+ Yn t + Y i2
v
it

(i = 1,..., n),

where the X., B.., and y.. are parameters and e , the n.^, and the v.
3 xj ij t it' xt

are independently distributed standard normal deviates. The random ele-

ments (which were kept small) were introduced partly for minor reasons of

realism, partly to see what difference they made, and partly to avoid

multicollinearity in the estimation of the aggregate production function.

This is particularly important in the cases in which allowance for expo-

nential disembodied technical change is made in estimating (2.4), since

the variables in that regression will be log (J(t)/L(t)) and t. Moreover,

as reported below, some regressions were made without imposing constant

returns, so that the variables in such cases would be log J(t), log L(t),

and t.

After considerable gross experimentation to discover what parameter

choices made much difference, the random terms were standardized for the

main experiments reported here by always taking X„ = .02, &.„ - .0001,

and y.„ - (i = 1,..., n) .
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Further, A, was chosen as .03 and A_ as zero. Thus, labor always

grows at an average 3% trend with deviations normally distributed with

mean zero and standard deviation .02. The initial experimentation re-

ferred to showed the measures of performance of the aggregate production

function not to be terribly sensitive to choices of A n and A
1

, so these

were standardized to reduce the gigantic number of different cases ex-

amined. For similar reasons, all the y were chosen as 0. (This is

merely a choice of units.)

The performance measures are sensitive, as one might expect, to

the choices made as to the capital and technical change parameters, the

principal sensitivity being to the trend terms. If all firms are grow-

ing at the same rate, then an aggregate capital index can be expected

to perform rather well; if firms grow at rather different rates, this is

less likely to be the case.

The initial conditions for the K. were chosen as follows. The n

firms were divided into two halves, one with relatively low values of a.

and one with relatively high values. We shall refer to these as "low-ot"

amd "high-a" firms, respectively. The 3.~ were chosen in three sets.

In the first of these, all S- n
= (i = 1,..., n) . In the second set,

all 3 for the low-a firms were set at and the 3 for the high-a

firms were set at 2. In the third set, these values were reversed. As

already remarked, these choices can also be thought of as changing the

number of firms. Since all logarithms were natural, changing a 3-
n

from

to 2 amounts to multiplying the initial capital stock by something

over 7.



-12-

The selection of the trend parameters was done rather more finely.

In one set of experiments, which I shall refer to as "two-group capital"

experiments, g was set at for firms in the high-a group, while all

g... for firms in the low-a group were set equal to each other and, in

successive runs allowed to vary from -.05 to +.05 in steps of .01.

Similarly, in a second set of experiments, which I shall call "two-

group Hicks" experiments, the y.-i for the high-a firms were set at 0.

To secure comparability with the two-group capital experiments, however,

the y.
1

for the remaining firms were chosen so that the equivalent trends

in their capital stocks would all be equal and move in steps of .01 from

-.05 to +.05. Such equivalent trends, of course, are such that a choice

of a particular value for 8., corresponds to a choice of Y., = 8 . , (1 -a.).r ll v ll ll l

We also report results for preliminary runs of the two-group Hicks ex-

periments, in which the y for the low-a firms were chosen all equal and

moving from -.05 to +.05 in steps of .01.

Now, since in these two-group experiments, all firms in a given group

grow or shrink together, there is a real sense in which they are roughly

all one firm for our purposes, so that, were these the only experiments

performed, we would not be giving too much scope to the effects of increa-

ses in n. This is particularly so, since the way in which the a. were

chosen, as already described, means that the average a. for each of the

two groups in such an experiment is getting closer to the other one when

n increases.

Note that, in view of constant returns, there is no essential dif-

ference between allowing one group of firms to shrink and allowing the

other to grow.
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Accordingly, we performed two more sets of experiments, which I shall

refer to as "fanning capital" and "fanning Hicks" experiments, respective-

ly.

In the fanning capital experiments, 8., was set equal to zero for the

firm with the highest a.. Call this firm 1 and number the firms so that
l

2
a. decreases. The remaining 3... were chosen as:

(3. A) 6
i;L

= (i - l)u (i = 1,..., n)

where u was allowed to go from -.05 to +.05 in steps of .01. Thus the

rates of growth of the firms "fanned out" from that of the first firm.

Note that much bigger relative rates of growth are involved here (for

n > 2) than in the case of the two-group experiments.

The fanning Hicks experiments were chosen analogously. In these,

(3.5) Y±1 = (1 - «
i
)(i " Du (i = 1,-.., n)

with y chosen as before.

Since the number of separate experiments to be run would be gigantic

if all possible combinations were tried, all y were set at zero in per-

forming capital experiments and all 6 were set at zero when performing

Hicks experiments.

The number of different experiments was still high. Each of the two-

group sets (including the preliminary two-group Hicks set) and each of the

2
Thus the high-a firms are firms 1,..., n/2 and the low-a ones are

firms n/2+1,
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fanning sets involves 11 experiments for each choice of the other para-

meters. Since there are 3 choices for n, 2 choices of the range of the

a., and 3 choices of initial conditions for the capital stocks, each

five sets of experiments involves 198 separate runs. In addition, to

ensure that the random variation involved had little effect on the con-

clusions, we performed 5 runs instead of 1 each time all the 6.. were

set at zero in the capital experiments or all the y were set at zero

in the Hicks experiments. This brought the total number of runs to 202

for each of the five sets or a grand total of 1010 exclusive of the

2
preliminary experimentation referred to earlier. However, since for

n = 2 a fanning experiment is identical with a two-group experiment, the

actual total of runs, exclusive of the extensive preliminary experimen-

tation, was 830.

The various choices of parameters are summarized in Table 3.1.

2
Since, as it turned out, there was only negligible difference in

the results of the experiments with zero growth which differ only by ran-

dom variation, we used only one of the five sets each time in analyzing
the results as reported below.
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Table 3.1

Different Choices of Parameters for Experiments

Choice of ValuesParameters

n

a.
1

A
o

A
l .

X
2

6
i0

2; 4; 8.

evenly distributed over range
.7 - .8 or .6 - .9.

0.

.03.

.02.

all firms; low-a firms and 2

high-a firms; high-a firms and
2 low-a firms

.

S .

,

all firms in Hicks experiments;
il . . , .

in two-group capital experiments,
for high-a firms and u for low-a

firms; in fanning capital experi-
ments, (i - l)u.

6.„ .0001 all firms.
i2

Y. all firms.

Y.-, all firms in capital experiments;
in final two-group Hicks experiments,

for high-a firms and (1 - a.)u for

low-a firms; in preliminary two-group
Hicks experiments, for high-a firms
and u for low-a firms; in fanning
Hicks experiments, (1 - a.)(i - l)p.

Y.„ all firms.
i2

u -.05, -.04,..., 0,..., .04, .05.
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in explaining the dependent variable.

A second natural measure is relevant to the equations in which con-

stant returns is not imposed. The underlying structure certainly is con-

stant returns. It is therefore of some interest to know whether or not

an aggregate production function when estimated from data generated by

that structure reveals that fact.

Somewhat similarly, in the Hicks experiments, there is underlying

Hicks-neutral technical change and in the capital experiments there is not.

It is of some interest to see whether this will be detected in the aggre-

gate estimates.

Further, the underlying firm production functions are all in fact

Cobb-Douglas with or without Hicks-neutral technical change. In general,

we would expect a well-performing aggregate Cobb-Douglas production func-

tion to give parameter estimates which are averages of the individual firm

production function parameters.

All of this, however, while interesting, is subsidiary to our main

focus, that of the explanation of wages. Our principal performance mea-

sure, therefore, will measure the degree of success of the aggregate pro-

duction functions in explaining the generated wage data, to which they are

not directly fitted. What measure should be used?

The measure which first naturally suggests itself is the squared

coefficient of determination:

1 2
R is a sensible measure of goodness of fit here, t-statistics

are not, since the problem is non-stochastic.
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E (w(t) - w(t))
2

2 t
(4.2) I = 1 - —

I (w(t) - w)
2

2 -
where w(t) is the actual wage, w(t) the predicted wage, and w the average

actual wage over the twenty years. This has the usual property of having

an upper bound of unity, although it is not bounded below by zero (or

anything else)

.

A little thought (and some hindsight), however, suggests that this

is not a terribly appropriate measure for our purposes. There is no rea-

son why our experiments cannot generate economies in which the variance

2
of wages is very small. This would make I also very small, even if pre-

dicted wages came very close to actual ones. This possibility occurs in

2
practice in a way which is convincing as to the inappropriateness of I .

There are numerous cases in which, when performing a given series of ex-

periments which differ only in relative growth rates (u) but have iden-

2
tical initial conditions and other parameters, I suddenly becomes very

2
There is an apparent issue as to how w(t) should be computed.

From (2.4),

(4.3) w(t) = a(Y*(t)/L(t)) ,

where ct,^of course, is estimated from the aggregate regressions (4.1).

Should Y (t) in (4.3) be taken as the actual value of Y (t) or the pre-
dicted value? Fortunately, R^ for all the regressions is so very high
that it turns out to make no practical difference which one is used. In

the results reported below, we used the actual value of Y (t)

.
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negative at a particular value of u while being satisfactorily positive on

both sides of that value. Examination of the histories of the correspon-

ding economies reveals that for smaller values of u, say, wages are going

up and, for larger values, they are going down, while, for the critical

value of u, they are nearly constant. Predicted wages pretty much dupli-

cate that behavior, and the numerator of the fraction in (4.2) stays

2
small, so that the erratic behavior of I is entirely due to the behav-

ior of the denominator and the accident that wages happen to have a

small variance in a particular experiment.

This naturally suggests the use of the numerator in (4.2) as itself

the measure of performance as to wage explanation, and the natural form in

which to use this is as the root-mean-square prediction error. Since this

is not scale free, we used instead the relative root-mean-square error,

calculated as:

(4.4) S =
4 (1/20) E (w(t) - w(t))

2

as our primary measure of performance.

3
There are other associated measures which might be used. One might,

for example, regress w(t) on w(t) and observe whether the constant term was

close to zero and the slope close to unity as well as computing the correla-
tion coefficient. While we did in fact do this, the results did not seem
to provide much information not already contained in the relative root-mean-
square error and they are not reported here. In any case, the relative root-

mean-square error seems the most natural single measure.
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5. Subsidiary Results

2
As more or less suspected, R turns out not to be a particularly sen-

sitive measure of performance. Essentially without exception, it is very

high, generally around .99. This holds for all four of the regressions

(4.1) and all sets of experiments. It reflects the fact that with every-

thing moving in trends of one sort or another, an excellent fit is ob-

tained regardless of misspecification of different sorts.

The estimated coefficients, however, do reflect misspecification in

different ways. Without going into great detail, the following comments

convey the general impression given.

Consider first cases in which the correct specification as to the

presence or absence of Hicks-neutral technical change is made. In such

cases, it often makes a great difference whether or not constant returns

is imposed, particularly in experiments where things are moving about.

Not only do the non-constant returns regressions (4.1a) and (4.1b) often

yield estimates of the degree of homogeneity (b + c) which are widely

different from unity, but also there are numerous (but less frequent)

cases in which the individual coefficients are ridiculous, including

many cases in which marginal products are estimated as negative. On

the other hand, there are many cases in which the individual coeffici-

ents are plausible and some in which they add up to something around

unity.

If constant returns is imposed, however, such wild behavior essen-

tially completely disappears and the exponents of labor and capital in

the aggregate regressions almost always lie in the range covered by the
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corresponding firm coefficients.

One obvious explanation for such behavior is that of multicolline-

arity. J(t) is composed of several variables trending at different rates

with small random fluctuations; L(t) is such a trend variable with larger

fluctuations. It is not then too surprising that when both log J(t) and

log L(t) appear in the regressions, particularly when t itself does,

results as to individual coefficients look peculiar. When only log

(J(t)/L(t))) appears, one would expect to do better in this respect.

Still, there is in many cases nothing like exact collinearity so this may

only be part of the explanation.

Multicollinearity may also play some part in the explanation of a

second phenomenon, this one relating to the correct or incorrect speci-

fication of the presence of Hicks-neutral technical change. Concentra-

ting on the constant returns results, we find, as one might expect, that

when dealing with Hicks experiments it makes a considerable difference

whether or not we allow for technical change at the aggregate level. If

we do, then results look plausible and, for low levels of movement, the

relative root-mean-square error in the prediction of wages (S) is low.

If no allowance for technical change is made in such cases, results are

far worse.

What is somewhat more surprising than this, however, is the fact

that in the capital experiments when there is no underlying technical

change, results are nevertheless somewhat better when technical change

at the aggregate level is assumed to be absent than when allowance is

made for its possible presence. Despite the fact that, in all such
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cases, the estimated coefficient of time in the aggregate regression turns

out to be very small in absolute value, there is a definite deterioration

in relative root-mean-square error, S, as compared with the same cases

with that coefficient set equal to zero in the estimation of the aggregate

production function. Conceivably, this is due to the fact that there are

only 20 observations to begin with, so that the use of one degree of free-

dom to estimate a zero coefficient is not a trivial loss of efficiency.

This may particularly be so when the estimation of that coefficient in-

volves the introduction of time, a variable which makes the regressions

pretty collinear, even with constant returns.

Similar considerations may also explain why the Hicks experiments

tend to have higher root-mean-square errors than the corresponding capi-

tal experiments in the results below.

Given all this, our analysis of the results as to wage prediction

proceeded by taking in each experiment, the wage prediction generated by

the best of the aggregate production functions estimated, as indicated

by the above considerations. These were the predictions generated by the

estimates imposing constant returns and making the correct specification

as to the presence or absence of Hicks-neutral technical change. In

general, these were also the best wage predictions in terms of relative

root-mean-square error. Thus the results in the next section are based

on (4.1c) for the capital experiments and on (4. Id) for the Hicks ex-

periments .
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6 . The Principal Results: Variance of Labor's Share and the Prediction
of Wages

We now come to the principal focus of the experiments, the prediction

of wages as measured by S . It is perfectly clear that there are some

cases in which we would naturally expect S to be small and some in which

we would expect it to be large.

Certainly, for the cases in which u is zero or almost zero, we would

expect an aggregate production function to do reasonably well. For such

cases, the individual capital stocks are roughly proportional to each

other and any average of them will provide a good capital index. It is

true that the correct form of the aggregate production function in such

cases will not be Cobb-Douglas , but one would expect an aggregate Cobb-

Douglas to do pretty well, nevertheless. We shall refer to such cases

as "low-movement" cases.

One would also expect such good performance in quite an opposite

case. Suppose that one of the firms starts out very large relative to

the others; suppose also that the large firm is growing relative to the

others. Then the entire economy is largely dominated by that firm and

output and wages are largely determined by its production function. In

such a case, treating the economy as though it were just one big firm is

obviously not going to be far off the mark. Note that this will be true

The correct form is the sum of the individual firms' production
functions, with each K^(t) set equal to k^J(t) and the L-^(t) determined
by the efficiency conditions. This last makes the writing of the aggre-
gate production function in closed form unhelpful, at best.
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whether the large and growing firm has a growing capital stock or a grow-

ing technical efficiency parameter.

This sort of case is most obvious when there are only two firms and

one of them is much bigger than the other; there are similar cases, how-

ever, for n = 4 or n = 8. In the two-group capital or two-group Hicks

experiments (but not in the fanning experiments), the high-a firms are

treated as a group, as are the low-a firms. The firms in each group

start out large or small together; they also grow proportionally (a

slight exception being the two-group Hicks experiments where identical

growth rates are adjusted by slightly different capital exponents for

different firms). Considering just one of the groups of firms, then, it

forms a low-movement case and we should expect to be able to treat it

more or less as a single unit. If one of those units is big and growing

relative to the other, however, this closely parallels the case of two

firms with one dominating the other. Again in such cases we should ex-

pect that treating the entire economy as a single firm gives fairly good

results.

We shall refer to such cases as "specialization cases," observing

that for n > 2, they have some aspects of low-movement cases as well.

There are not too many such cases even for the two-group experiments.

2
For the fanning experiments in which n > 2 , there can be no cases which

2
For n = 2, fanning experiments are identical to two-group experi-

ments ,
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are exactly specialization cases as just defined. On the other hand,

when one group of firms starts out very big and grows relative to the

other, then, even in the fanning cases, it is misleading to take the rel-

evant rate of growth as that of the big firms relative to the small ones.

The big firms dominate throughout and what matters is the rates of growth

of those firms relative to each other. For n = 4, this is u; for n = 8,

this is 3p (taking the maximum of such relative growth rates) . In the

results below, we have accounted for this by indexing such cases under

growth rates u and 3u instead of 3u and 7u, respectively, as would be

done were all n firms treated symmetrically. This means, for example,

that a fanning case in which there are four firms with two of them big

and growing, with the growth rates of the four firms being 0, .01, .02,

and .03, is treated as a case of .01 relative growth rather than a case

of .03 relative growth in the tables below and is thus counted with the

low-movement cases

.

There is also a large class of cases in which it is obvious that the

wage predictions of the estimated aggregate production functions will be

poor. Since those predictions are from Cobb-Douglas functions, they in-

volve the prediction that labor's share of total output will be constant.

If, in fact, labor's share has a high variance in a given experiment, one

would hardly expect such wage predictions to be accurate.

While it is thus obvious that a low variance of labor's share is a

necessary condition for a good set of wage predictions, it is by no means

obvious that this is also a sufficient condition. Yet, by and large, we
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find this to be the case. Even excluding the a priori obvious low-move-

ment and specialization cases, we find that a low variance of labor's share

is associated with a low relative root-mean-square error in wage predic-

tion. This phenomenon thus occurs even in cases in which there is high

relative movement and no domination by a set of proportionally growing

firms, so that the underlying technical relationships do not look anything

like an aggregate Cobb-Douglas (or indeed, any aggregate production func-

tion) in any sense. Cases which seem a priori similar to these generate

a relatively high variance of labor's share and do badly on the relative

root-mean-square error criterion.

We now present the results, postponing heuristic argument as to the

plausibility of such a finding and discussion of its implications to the

next section.

Each of Tables 6.1 - 6.8 gives the joint distribution of the rela-

tive root-mean-square error of the wage predictions (S) and the standard

deviation of labor's share. The latter, for comparability, is divided into

intervals which are .00375 in absolute value, this being .5% of .75 which

is the overall mean of labor's share in all the experiments. Columns are

thus labelled "Relative Standard Deviation of Labor's Share." Table 6.1A

summarizes all experiments; Table 6.1C, all capital experiments; and Table

6.1H, all Hicks experiments. Tables 6.2A, C, and H, provide the same sum-

mary deleting specialization cases and all cases in which the relevant

growth rates are zero or one per cent. Tables 6.3 - 6.8 (C) and 6.3 -

6.8 (H) give the results broken down by growth rates, but still excluding

pure specialization cases.
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In all cases, growth rates are taken as u, so that Hicks cases are

grouped with capital cases with equivalent growth rates . In the fanning

cases, the relevant growth rate is taken to be that of the fastest grow-

ing firm, except in cases in which one group of firms is large and grow-

ing, in which case, as noted above, it is taken to be the growth rate of

the fastest-growing large firm relative to the slowest-growing large firm.

Each box in each of the capital tables has three entries, correspond-

ing to two-group, fanning, and all experiments, respectively; each box in

each of the Hicks tables has four entries, corresponding to preliminary

two-group, final two-group, fanning, and all experiments, respectively.

The total of the entries for the individual experiment types is not always

that given in the last line of the box because final two-group and fanning

experiments are identical for n = 2 and are counted in each category sep-

arately but included in the total only once.

The sparseness of entries in the upper right-hand corners of the ta-

bles corresponds to the obvious fact that an aggregate Cobb-Douglas can

not give a good explanation of wages when the variance of labor's share is

high. The point of interest is the sparseness of entries in the lower

left-hand corners, and the density of entries in the upper left-hand cor-

ners showing the cases in which the variance of labor's share is low and

(for the upper corners) the relative root-mean-square error of wage pre-

diction low. This phenomenon is particularly marked, if one observes that

the left-hand axis is rather finely subdivided at the upper end, so that

the first four boxes only get up to 2% relative root-mean-square error and
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the first seven boxes only up to 5%, but it generally appears even within

3
the first few boxes.

Obviously, the results of the capital experiments fit the described

pattern extremely tightly, there being few cases much off the principal

diagonals. The results of the Hicks cases also fit it, particularly look-

ing at the number of cases in each box and not merely at whether or not

the box is empty, but not so strikingly well as the capital experiment

results. This is probably due to the greater problems of multicollinear-

ity encountered in the aggregate regressions in the Hicks experiments, as

we shall discuss in the next section.

3
It does not seem worthwhile to compute a formal test of association,

The most obvious chi-square test would involve the guaranteed emptiness of

of the upper right-hand corner, a point of little interest. Moreover, the
appearance of very many cases in the upper left-hand corner would be impor-

tant regardless of the rest of the table. In any case, the pattern in the
results is strong enough to be obvious at a glance.
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TABLE 6.1A

SUMMARY OF ALL EXPERIMENTS

RELATIVE
STAND DEV OF
LABOR'S SHARE

I PERCENT I

1.5-2.0 2.0-2.5

REL ROOT MEAN
SQUARE ERROR IN
PREDICTING WAGES

I PERCENT 1

0.0- 0.5
PRELIM TMO-GRCUP 63 1 1

THO-GRCUP 148
FANNING 93

TOTAL 254 1 1

0.5- 1.0
PRELIM TMO-GROUP 30 15

TMC-GROUP 48 42 1

FANNING 24 43 1

TOTAL 93 83 1

1.0- 1.5
PRELIM TWO-GRCUP 10 5 3

TMC-GROUP 11 12 20 2

FANNING 4 16 18 1

TOTAL 23 30 35 2

1.5- 2.0
PRELIM TMO-GROUP 3 4 5 3

TMG-GRCUP 9 2 6 10 2

FANNING 2 2 14 9 4
TOTAL 13 8 22 19 4

2.0- 3.0 -

PRELIM TMO-GROUP 5 5 7 2 3 1

TMO-GROUP 5 4 2 6 8 5 1

FANNING 5 2 3 12 7 8 4
TOTAL 15 11 12 15 13 12 4

3.0- 4.0
PRELIM TMC-GRCUP 3 3 1 1 1

TMC-GROUP 4 4 2 1 3 3

FANNING 4 5 2 3 1 1 13
TOTAL 6 12 4 7 4 2 16

4.0- 5.0
PRELIM TMO-GRCUP 2 1 1 1 1

TWO-GROUP 1 3 1 3
FANNING 4 2 2 1 1 1 9

TOTAL 5 4 5 3 2 1 11

5.0-10.0
PRELIM TWO-GROUP 3 1 1 2 2 1 1

TWO-GROUP 5 2 5 2 3 3

FANNING 1 7 3 1 4 7 16
TOTAL 4 10 5 7 6 9 18

10.0-20.0
PRELIM TWO-GROUP 1 1 4

TWO-GROUP 1 2 2

FANNING 1 4 2 1 6

TOTAL 2 4 3 1 3 11

ABOVE 20
PRELIM TWO-GROUP

TMO-GROUP 1 1

FANNING 1 4 2 1 2 11
TOTAL 1 1 4 2 1 2 11

ITEMS SOMETIMES DO NOT ADD TO TOTALS BECAUSE EACH TWO-FIRM EXPERIMENT WAS COUNTED IN BOTH CATEGORIES,
ADDED IN TO TOTAL ONLY ONCE.
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TABLE 6.1C

SUMHARV OF ALL CAPITAL EXPERIMENTS

RELATIVE
STANO OEV CF

LABOR'S SHARE ABOVE 3.0

REL ROOT MEAN
SQUARE ERROR IN
PREDICTING WAGES

(PERCENT!

0.0- 0.5
TWO-GROUP

FANNING
TOTAL

87
52

108

0.5- 1.0
TWO-GROUP

FANNING
TCTAL

27
B

34

30
28
47

1

1

1

1.0- 1.5
TWC-GRCUP

FANNING
TOTAL

4
6

10

17
17
29

2

1

2

1.5- 2.0
TWC-GRCUP

FANNING
TOTAL

1

1

8
8

10
6

13

2

3

3

2.0- 3.0
TWO-GROUP

FANNING
TOTAL

1

I

3

3

1

5

5

5

5

5

7

10

1

4
4

3.0- 4.0
TWO-GROUP
FANNING

TOTAL
1

1

2

2

3

11
13

4.0- 5.0
TMC-GROUP

FANNING
TOTAL

1

1

1

8

8

5.0-10.0
TWG-GRCUP

FANNING
TOTAL

2

2

1

14
14

10.0- 20.0
TWO-GROUP

FANNING
TCTAL

1

1

A60VE 20
TNO-GRCUP
FANNING

TOTAL

ITEMS SOMETIMES DO NOT AH) TO TOTALS BECAUSE EACH TWO-fTHM EXPERIMENT WAS COUNTED IH BOTH CATEGORIES , BUT

ADDED IN TO TOTAL ONLT ONCE.
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TASLE 6.1H

SUMMARY OF ALL HICKS EXPERIMENTS

RELATIVE
STAND DEV OF
LABOR'S SHARE 0.0-0.5
(PERCENT.I

REL ROOT MEAN
SQUARE ERROR IN
PREDICTING WAGES

(PERCENT)

0.0- 0.5
PRELIM TWO-GROUP 63

TWO-GRCUP 61

FANNING 41
TOTAL 146

0.5- 1.0
PRELIM TKO-GROUP 30

TwO-GRCUP 21
FANNING 16

TOTAL 59

1.0- 1.5
PRELIM TWO-GROUP 10

TKO-GRCUP 11
FANNING 4

TOTAL 23

1.5- 2.0
PRELIM TWO-GROUP 3

TWO-GROUP 9

FANNING 2

TOTAL 13

2.0- 3.0
PRELIM TWO-GROUP 5

TWO-GROUP 5

FANNING 5

TOTAL 15

3.0- 4.0
PRELIM TWC-GROUP

TWC-GRGUP 4
FANNING 4

TOTAL 6

4.0- 5.0
PRELIM TWO-GRCUP

TWC-GROUP 1

FANNING 4
TOTAL 5

5.0-10.0
PRELIM TWO-GROUP 3

two-group
FANNING 1

TOTAL 4

10.0-20.0
PRELIM TWC-GRCUP

TWO-GROUP
FANNING

TOTAL

ABOVE 20
PRELIM TWC-GROUP

TWO-GROUP
FANNING 1

TOTAL 1

1.5-2.0 2.0-2.

15
12
15
36

10
20

5

1

10

3
4
5

12

1

5

7

10

6
I*

2

5
7

10

4
2

5

10

1

11
11

ITEMS SOMETIMES DO HOT ADD TO TOTALS BECADSE EACH TMO-FIRM EXPERIMENT WAS CODNTED IN BOTH CATEGORIES, EOT
ADDED IN TO TOTAL ONLY ONCE.
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TABLE 6.2A

SUMMARY OF ALL NON-TRIVIAL EXPERIMENTS

RELATIVE
STAND OFV OF

LABOR" S SHIRE
(PEPCFNTI

RFL ROnT MEAN
SOUARF ERROR IN
PREDICTING WAGFS

IPFRCFNTI

O.O- 0. 5

TWO-GPOUP
FANNING

TOTAL

58
10
14

1

1

1

o

1

0.5- 1.0
TWO-GPOUP

FANNING
TOTAL

45
15
55

36
33
5B

l.o- 1.5
TWO-GROUP

FANNING
TDTfL

15

17

14
15
26

12
13
22

1.5- 7.0
TWO-GPOUP 10 6 4 3

FANNING 2 2 12 6 2

TOTAL 11 « 14 8 2

7.0- 3."
TWO-GROUP 7 9 6 4 7 6 1

FANNING 5 2 3 8 4 R 4

TOTAL 12 11 10 9 12 4

3.0- 4."
TWO-GROUP 1 7 2 4 1 4

FANN! WG 7 5 2 3 1 1 13

TOTAL ^ 12 2 5 4 2 16

4.0- 5.0
TWO-GROUP 1 7 1 2 1 4

FANNING 4 2 1 1 1 1 9

TOTAL 5 4 2 3 2 1 11

5.0- o.o
TWO-GROUP 3 6 1 4 2 * 4

FANNING 1 7 3 1 3 7 16
TOTAL 4 10 3 4 4 9 18

10.O- >0.0
TWO-GROUP 1 3 6
FANNING 1 4 2 1 6

TOTAL 2 4 2 1 3 11

AROVE 21
TWO-GROUP n 1 I

FANNING 1 o 4 2 1 2 11
TOTAL 1 1 4 7 1 2 11

OOFS NOT INCLUDE GROWTH RATES "F -1 TO *1 PFRCENT OR PURE (TW0-GR0UP1 SPECIALIZATION CASES.
ITFMS SOMFTIHFS 00 NOT ADO TO TOTALS BECAUSE EACH TWO-FIR" EXPERIMENT WAS COUNTED IN BOTH CATEGORIES. BUT
400EO TN TO TOTAL ONLY ONCE.
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Tim 6.2C

SUMMARY OF NON-TRIVIAL CAPITAL EXPERIMENTS

RFLATIVE
STAND DFV of
LARrrR'S SHARF
(PFRfCNT!

ABOVE 3.0

RFL ROOT MEAN
SOUARE ERROR IN
PREOIfTlNG MAGES

IPERCFNTI

o.o- 0.5
two-group

FANNING
TOTAL

24
71
36

0.5- 1.0
TWO-GROUP

FANNING
TOTAL

IT
6

22

72
23
37

1.0- 1.5
TWO-GROUP

FANNING
TOTAL

3

6

9

Q

13
19

1.5- 7.0
TWO-GROUP 3

FANNING I 3 3 1

TOTAL 1 » 5 1

2.0- 3.0
TWO-GROUP 1 4 5 1

FANNING 1 3 5 4 7 4

TOTAL 1 3 5 6 10 4

3.0- 4.0
TWO-GROUP 1 3

FANNING 1 2 11

TOTAL 1 2 1 13

4.0- 5.0
TWO-GROUP
FANNING

TOTAL
I

1

1

1

1

8

8

5. fl- [0.0
TWO-GPOUP

FANNING
TOTAL

2

2

I

14
14

lO. 0- >0.

TWO-GROUP
FANNING

TOTAL.

1

1

A3HVE 20
Two-GPnuP

FA33IHG
TOTAL

OOPS NOT INCLUDE GROWTH RATES OF -1 TO +1 PERCENT n R PURE (TWO-GROUP! SPECIALIZATION CASES.
ITFMS SO»FTIMES HO NOT SOO TQ T/1TALS BECAUSE EACH TWO-FIRM EXPERIMENT WAS COUNTED IN BOTH CATEGORIES,
ADDED IN TO THTAL ONLY ONCE.
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TABLE 6.2H

SUGARY TF NPN-TRIVIAL HICKS EXPERIMENTS

RFl 4TTVF
ST&NH OFV OF
I SRHR'S SHfiPF
(PFPCFMTt

ABOVE 3.0

RFL ROOT MFAN
SOllARF FRROR IN
PRFOITT1NG WARES

(PFRCFNT)

i.o- o« 5

two-group
FANNING

TOTAL

34
1»
4q

1

1

1

1

1

1.5- 1 .0
TWO-GPOUP

FANNING
TOTAL

7R 14
11

?1

1.0- 1.1
TWO-GROUP

FANNING
T"TAL

15
7

17

11
O

17

3

3

1.5- ?.n
two-group 11 6 4 1

FANNING ? 1 4 3 1

TrtTAL 11 7 6 3 1

?.o- 3.1
TWO-GRHUP 7 Q 6 3 3 1

FANNING 5 1 3 1

TOTAL 1? H 6 5 3 2

3.0- 4.0
TWO-GROUP 1 7 2 3 1 1

FANNING ? 5 1 1 1 1 2

TOTAL 3 12 1 3 3 2 3

4.1- 5.1
TWO-GROUP 1 ? 1 2 1 3

FANNING 4 2 1 1 1

TOTAL 5 4 2 2 1 1 3

5.0- i.o
TWO-GROUP 3 & 1 4 2 4 3

FANNING 1 7 3 1 3 5 2

TOTAL 4 10 3 4 4 7 4

i".p- »n.n
two-group 1 3 6

FANNING 1 4 2 1 5

TOTAL 2 4 2 1 3 10

ABOVF ?1
TWO-GROUP 1 1 1

FANNING 1 4 2 1 2 11
TOTAL 1 1 4 2 1 2 11

OIF* MOT TMH UDF GROWTH RAT^S OF -1 TO +1 PERCENT OR PURE (TW0-GR0UP1 SPECIALIZATION CASES.
TTFMS SfT-ETTMFS 00 NOT ADD TO TOTALS BECAUSE EACH TWO-FIRM EXPERIMENT HAS COUNTED IN BOTH CATEGORIES, BUT
AnriFH IN T"1 TOTAL ONLY ONCF.
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TABLE 6.3C

CAPITAL EXPERIMENTS. 0- 1 PERCENT GROWTH

RELATIVE
STAND DEV OF
LABOR'S SHARE
IPFRCFNT)

REL ROOT HEAN
SOUARE ERROR IN
PREDICTING WAGES

(PERCENT]

0.0- 0.5
TWO-GROUP 22

FANNING 16
TOTAL 31

0.5- 1.0
TWO-GROUP 5

FANNING 2

TOTAL 7

1.0- 1.5
TWO-GROUP

FANNING
TOTAL

1.5- 2.0
TWO-GROUP

FANNING
TOTAL

2.0- 3.0
TWO-GROUP

FANNING
TOTAL

3.0- 4.0
TWO-GROUP

FANNING
TOTAL

4.0- 5.0
TWO-GROUP

FANNING
TOTAL

5.0- 10.0
TWO-GROUP

FANNING
TOTAL

10.0-20.0
TWO-GROUP

FANNING
TOTAL

ABOVE 20
TWO-GROUP

FANNING
TOTAL

DOES NOT INCLUDE PURE (TWC-GROUPI SPECIALIZATION CASES.
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TABLE 6.4C

CAPITAL EXPERIMENTS! 2- 3 PERCENT GROWTH

RELATIVE
5TAND DEV OF
LABOR'S SHARE
(PERCENT)

REL ROOT MEAN
SOUARE FRROR IN
PREDICTING WAGES

(PERCENTI

0.5-1.0 1.0-1.5 1.5-2.0 2.0-2.5 ABOVE 3.0

0.0- 0.5
TWO-GRnUP
FANNING

TOTAL

0.5- 1.0
TWO-GROUP

FANNING
TOTAL

1.0- 1.5
TWO-GROUP

FANNING
TOTAL

1.5- 2.0
TWO-GROUP

FANNING
TOTAL

2.0- 3.0
TWO-GROUP

FANNING
TOTAL

3.0- 4.0
TWO-GROUP

FANNING
TOTAL

4.0- 5.0
TWO-GROUP

FANNING
TOTAL

5.0-10.0
TWO-GROUP

FANNING
TOTAL

10.0-20.0
TWO-GROUP

FANNING
T0TA1

ABOVE 20
TWO-GROUP

FANNING
TOTAL

21
17
30

2

10

OOFS NOT INCLUDE PURE (TWC-GROUPI SPECIALIZATION CASES.
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TABLE 6.SC

CAPITAL EXPERIMENTS. 4- 5 PERCENT GROWTH

RELATIVE
STAND OFV OF
LAROR'S SHARE
1PFRCENTI

0.5-1.0 1.0-1.5 1.5-2.0 2.0-2.5

RFL ROOT MEAN
SOUARF ERROR IN
PREDICTING WAGES

(PFRCFNTI

TWO-GROUP
F ANN T NG

TOTAL

0.5- 1.0
TWO-GROUP

FANNING
TOTAL

1.0- 1.5
TWO-GROUP

FANNING
TOTAL

1.5- 2.0
TWO-GROUP

FANNING
TOTAL

2.0- 3.0
TWO-GROUP

FANNING
TOTAL

3.0- 4.0
TWO-GROUP

FANNING
TOTAL

4.0- 5.0
TWO-GROUP

FANNING
TOTAL

5.0-10.0
TWO-GROUP

FANNING
TOTAL

10.0-20.0
TWO-GROUP

FANNING
TOTAL

ABOVF 70
TWO-GROUP

FANNING
TOTAL

13
6

14

5

11

DOES NOT INCLUDE PURF (TWO-GROUP) SPECIALIZATION CASES.
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TABLE 6.6C

CAPITAL EXPERIMENTS. 6-10 PERCENT GROWTH

RELATIVE
STAND REV OF
LABOR'S SHARF
(PFRCFNTI

0.5-1.0 1.0-1.5 1.5-2.0 2.0-2.5 ABOVE 3.0

RFL ROOT MEAN
SQUARE ERROR IN
PREDICTING MAGES

IPERCENTI

0.0- 0.5
TWO-GROUP
FANNING

TOTAL
2

2

0.5- 1.0
TWO-GROUP

FANNING
TOTAL

2

2

1.0- 1.5
TWO-GROUP

FANNING
TOTAL

1.5- 2.0
TWO-GROUP

FANNING
TOTAL

2.0- 3.0
TWO-GROUP

FANNING
TOTAL

3.0- 4.0
TWO-GROUP

FANNING
TOTAL

4.0- 5.0
TWO-GROUP
FANNING

TOTAL

5.0- 10.0
TWO-GROUP

FANNING
TOTAL

10.0- 20.0
TWO-GROUP

FANNING
TOTAL

ABOVE 20
TWO-GROUP

FANNING
TOTAL

DOES NOT INCLUDE PURF (TWC-GROUP) SPECIALIZATION CASES.
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TABLE 6.7C

CAPITAL EXPERIMENTS. 11-15 PERCENT GROWTH

RELATIVE
STAND OEV OF
LABOR'S SHARE
(PERCENT!

REL ROOT MEAN
SOUARE ERROR IN
PREDICTING WAGES

IPFRCFNT)

0.5-1.0 1.0-1.5 1.5-2.0 2.0-2.5 ABOVE 3.0

0.0- 0.5
TWO-GROUP
FANNING

TOTAL

0.5- 1.0
TWO-GROUP
FANNING

TOTAL

1.0- 1.5
TWO-GROUP
FANNING

TOTAL

1.5- 2.0
TWO-GROUP

FANNING
TOTAL

2.0- 1.0
TWO-GROUP

FANNING
TOTAL

1.0- 4.0
TWO-GROUP

FANNING
TOTAL

4.0- 5.0
TWO-GROUP

FANNING
TOTAL

5.0-10.0
TWO-GROUP
FANNING

TOTAL

10.0-20.0
TWO-GROUP

FANNING
TOTAL

ABOVE 20
TWO-GROUP

FANNING
TOTAL

DOES NOT INCLUDE PURE (TWC-GROUPI SPECIALIZATION CASES.
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TABLE 6.8C

CAPITAL EXPERIMENTS, 16-35 PERCENT GROWTH

RELATIVF
STANO DEV OF
LAROR'S SHARE
(PERCENT!

0.5-1.0 1.0-1.5 1.5-2.0 2.0-2.5 ABOVE 3.0

RE1 ROCT MEAN
SOUARE ERROR IN
PREDICTING WAGFS

1 PER CENT 1

0.0- 0.5
TWO-GROUP
FANNING

TOTAL

".5- 1.0
TWO-GROUP

FANNING
TOTAL

1.0- 1.5
TWO-GROUP

FANNING
TOTAL

1.5- 2.0
TWO-GROUP

FANNING
TOTAL

1

1

2.0- 3.0
TWO-GROUP
FANNING

TOTAL
2

2

1

1

2

2

3.0- 4.0
TWO-GROUP

FANNING
TOTAL

1

1

2

2

1

1

4.0- 5.0
TWO-GROUP

FANNING
TOTAL

1

1

1

1

1

1

5.0- 10.0
TWO-GROUP
FANNING

TOTAL
2

2

8

8

10.0- >0.0
TWO-GROUP
FANNING

TOTAL
1

1

ABOVF 20
TWO-GROUP

FANNING
TOTAL

DOES NOT INCLUDE PURE (TWC-GR0IIP1 SPECIALIZATION CASES.
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TABLE 6.3B

HICKS EXPERIMENTS. 0- 1 PERCENT GROWTH

RELATIVE
STAND DFV OF
LABOR'S SHARE
(PERCENT!

RFL ROOT MEAN
SQUARE ERROR IN
PREDICTING WAGES

(PERCENTI

0.5-1.0 1.0-1.5

0.0- 0.5
PRFLIM TWO-GROUP

TWO-GROUP
FANNING

TOTAL

?0
14
37

0.5- 1.0
PREL IM TWO-GROUP

TWO-GROUP
FANNING

TOTAL

1.0- 1.5
PREL IH TWO-GROUP

TWO-GROUP
FANNING

TOTAL

5

13

1.5- 7.0
PRFL IM TWO-GROUP

TWO-GROUP
FANNING

TOTAL

7.0- 3.0
PRFLIM TWO-GROUP

TWO-GROUP
FANNING

TOTAL

3.0- 4.0
PRELIM TWO-GROUP

TWO-GROUP
FANNING

TOTAL

4.0- 5.0
PREL IM TWO-GROUP

TWO-GROUP
FANNING

TOTAL

5.0-10.0
PRELIM TWO-GROUP

TWO-GROUP
FANNING

TOTAL

10.0-20.0
PREL IM TWO-GROUP

TWO-GROUP
FANNING

TOTAL

ABOVE 20
PRFL IM TWO-GROUP

TWO-GROUP
FANNING

TOTAL

DOES NOT INCLUDE PURF (TWC-GROUPI SPECIALIZATION CASES.
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TABLE 6.4H

HICKS EXPERIMENTS. 2- 3 PERCENT GROWTH

REI STIVE
STAND OFV OF
LABOR'S SHARE
(PERCENT)

0.5-1.0 1.0-1.5 ABOVE 3.0

REL ROOT MEAN
SQUARE ERROR IN
PREnlCTINC, WAGES

(PERCFNT!

0.0- 0.5
PRFL 1M TWO-GROUP

TWO-GROUP
FANNING

TOTAL

0.5- 1.0
PRFLIM TWO-GROUP

TWO-GROUP
FANNING

TOTAL

1.0- 1.5
PRFL IM TWO-GROUP

TWO-GROUP
FANNING

TOTAL

1.5- ?.0
PRFL IM TWO-GROUP

TWO-GROUP
FANNING

TOTAL

?.G- 3.0
PREL IM TWO-GROUP

TWO-GROUP
FANNING

TOTAL

3.0- 4.0
PRFLIM TWO-GROUP

TWO-GROUP
FANNING

TOTAL

4.0- 5.0
PREL IM TWO-GROUP

TWO-GROUP
FANNING

TOTAL

5.0-10.0
PRELIM TWO-GROUP

TWO-GROUP
FANNING

TOTAL

10.0-70.0
PRELIM TWO-G~ n UP

TWO-GPOUP
FANNING

TOTAL

ABOVE ?0
PRFLIM TWO-GROUP

TWO-GROUP
FANNING

TOTAL

II

11
IB

OOFS NOT INCL1IDF PURE (TWC-GPOUPI SPECIALIZATION CASES.
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TABLE 6.5H

HICKS EXPERIMENTS. 4- 5 PERCENT GROWTH

RELATIVE
STANO OEV OF
LABOR'S SHARE
IPERCENTI

RFL ROTT MEAN
SOUARE ERROR IN
PREDICTING WAGES

IPERCFNTI

O.O- 0.5
PREL IM TWO-GROUP 10

TWO-GROUP
FANNING ?

TOTAL 12

0.5- 1.0
PRELIM TWO-GROUP 5 3

TWO-GROUP 3 1

FANNING 1 1

TOTAL B 4

1.0- 1.5
PRELIM TWO-GROUP 1 1

TWO-GROUP 3 4 1

FANNING 1 2

TOTAL 5 5 1

1.5- 2.0
PREl IM TWO-GROUP

TWO-GROUP 1 3

FANNING 2 1

TOTAL 1 3 1

2.0- 3.0
PREL IM TWO-GROUP 1 1

TWO-GROUP 3 3 2 1

FANNING 1 2

TOTAL 4 3 3 3

3.0- 4.0
PREL IM TWO-GROUP 1

TWO-GROUP 1 1

FANNING 1

TOTAL 1 I 1 1

4.0- 5.0
PREL IM TWO-GROUP

TWO-GROUP 1 1 1 2

FANNING 1

TOTAL 1 1 1 2

5.0-10.0
PREL IM TWO-GROUP 1

TWO-GROUP 5 1 1 1 2

FANNING 3 1 1 1

TOTAL 5 1 2 1 2

10.0-20.0
PREL IH TWO-GROUP

TWO-GROUP 1 r> 1 2

FANNING 1 1

TOTAL 1 1 1 2

ABOVE 20
PRFL IM TWO-GROUP

TWO-GROUP 1 1

FANNING 1

TOTAL 1 1

DOFS NOT INCLUDE PURF (TWC-GROUfM SPECIALIZATION CASES.
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TABLE 6.6H

HICKS EXPERIMENTS, 6-10 PERCENT GROWTH

RELATIVF
STAND DFV OF
LABOR'S SHARE
IPERCFNT)

REL ROOT MFAN
SQUARE FRROR IN
PRFOICTINC, WAGES

(PFRCFNT)

ABOVE 3.0

0.0- 0.5
PRFLIM TWO-GROUP

TWO-GROUP
FANNING

TOTAL

10

0.5- 1.0
PRFl !M TWO-GROUP

TWO-GROUP
FANNING

TOTAL

1.0- 1.5
PRFl IM TWO-GROUP

TWO-GROUP
FANNING

TOTAL

1.5- 7.0
PRELIM TWO-GROUP

TWO-GROUP
FANNING

TOTAL

?.0- 3.0
PRFL I" TWO-GROUP

TWO-GROUP
FANNING

TOTAL

3.0- 4.0
PRFl TM TWO-GROUP

TWO-GROUP
FANNING

TOTAL

4.0- 5.0
PRFL IM TWO-GROUP

TWO-GROUP
FANNING

TOTAL

5.0-10.0
PRFL IM TWO-GROUP

TWO-GROUP
FANNING

TOTAL

10.0-70.0
PRFl IM TWO-GROUP

TWO-GROUP
FANNING

TOTAL

ABCVF ?0
PREL IM TWO-GROUP

TWO-GROUP
FANNING

TOTAL

OOFS NOT 1NCLU0E PURE (TWC-GROUPI SPECIALIZATION CASES.
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TABLE 6.7H

HICKS EXPERIMENTS, 11-15 PERCENT GROWTH

RELATIVE
STAND DEV OF
LABOR'S SHARE
(PERCFNTI

ABOVE 3.0

REL ROTT MEAN
SQUARE ERROR IN
PREDICTING WAGES

(PERCENT)

0.0- 0.5
PREL IM TWO-GROUP 3 1

TWO-GROUP
FANNING 2

TOTAL 5 1

0.5- 1.0
PRELIM TWO-GROUP 6 2

TWO-GROUP
FANNING 1

TOTAL 7 2

1.0- 1.5
PRELIM TWO-GROUP 2

TWO-GROUP D

FANNING 1

TOTAL 2 1

1.5- 2.0
PRFL IM TWO-GROUP I 1

TWO-GROUP
FANNING 1 1 1

TOTAL 2 1 1 1

7.0- 3.0
PREl IM TWO-GROUP 1 1 1 1

TWO-GROUP
FANNING 1 1 1

TOTAL 2 2 1 2

3.0- 4.0
PRFL IM TWO-GROUP 1 1

TWO-GROUP
FANNING 1 2

TOTAL 1 3 1

1.0- 5.0
PRFL1M TWO-GROUP 1

TWO-GROUP
FANNING 1 1

TOTAL 2 1

5.0-10.0
PRFLIM TWO-GROUP 1

TWO-GROUP
F ANN I NG 1

TOTAL 2

1 0.0-70.0
PPFI IM TWO-GROUP

TWO-GROUP
FANNING 1 2 I 2

TOTAL 1 2 1 2

AROVF 70
PREL IM TWO-GROUP

TWO-GROUP
FANNING I 3 1 1 4

TOTAL 1 3 1 1 4

OOFS NOT INCLUDE PURE (TWC-GROUPI SPECIALIZATION CASES.
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TABLE 6.8B

HICKS EXPERIMENTS. 16-35 PERCENT GROWTH

RELATIVE
STAND DEV OF
LABOR'S SHARF
(PERCENT)

0.5-1.0 1.0-1.5 ABOVE 3.0

REL ROOT WEAN
SQUARE ERROR IN
PREDICTING WAGES

(PERCENT)

0.0- 0.5
PRELIM TWO-GROUP 1

TWO-GROUP
FANNING 2

TOTAL 2 1

0.5- 1.0
PRELIM TWO-GROUP 3 5

TWO-GROUP
FANNING 1 1

TOTAL 4 6

1.0- 1.5
PREL 1M TWn-GROUP 3 2 2

TWO-GROUP
FANNING 1

TOTAL 3 3 2

1.5- 2.0
PRELIM TWO-GROUP 1 3 1

TWO-GROUP
FANNING n

TOTAL 1 3 1

2.0- 3.0
PRFLIM TWO-GROUP 2 3 3 1

TWO-GROUP
FANNING

TOTAL 2 3 3 1

3.0- 4.0
PRELIM TWO-GROUP 2 1 1

TWO-GROUP
FANNING 2

TOTAL 2 1 3

4.0- 5.0
PREL IM TWO-GROUP 1 1 1

TWO-GROUP
FANNING 1 1

TOTAL 1 2 1 1

5.0-10.0
PRELIM TWO-GROUP 3 1 1 1

TWO-GROUP
FANNING 2 1

TOTAL 3 3 1 1 1

10.0-20.0
PRELIM TWO-GROUP 1 4

TWO-GROUP
FANNING 1 1

TOTAL 1 1 5

ABOVE 20
PREL IM TWO-GROUP

TWO-GROUP
FANNING 1 1 I 1 6

TOTAL 1 1 1 1 6

DOES NOT INCUUttE.PURE (TWC-GROUP) SPECIALIZATION CASES.
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7 . Discussion of the Results

Why should an aggregate Cobb-Douglas do well in explaining wages when

labor's share has a small variance? With the benefit of hindsight it is

possible to give a fairly convincing heuristic explanation as to the rea-

sonableness of our principal result for these experiments, showing that it

is, in part, a consequence of the subsidiary results discussed earlier.

Indeed, that heuristic explanation strikes me as so convincing that I hes-

itate to give it lest the reader mistake it for a proof and believe that

all the experiments were unnecessary. It is not a proof, however, and the

reader should bear in mind the fact that in experiments such as this in

which the data are all internally generated with little stochastic element,

any organizing principle for the results which can be made to seem very

reasonable will also misleadingly appear afterwards to have been deducible

without the experiments.

Consider the polar case in which labor's share just happens to be

constant. Call that share a. Then wages and output per man are certainly

related by:

(7.1) w(t) = (l/a)(Y*(t)/L(t)) .

We have already noted, however, that our regressions invariably give an

*
extremely close fit to log (Y (t)/L(t)), so that we would expect to do well

in explaining wages in such a case with labor's share constant, provided

that we obtained a decent estimate of a.

It is clear, however, that since the marginal product of labor is
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equal to w(t) in every firm:

(7.2) a =

E w(t)L (t)

w(t)L(t) . i=l _
* n

Y (t) *
1 '

I Y.(t)
i-1 *

n Y*(t) n

= a
i

(LT(o
)L

i
(t)

*
a
i
Y
i
(t)

i=l 1 i=l

n * n *
I Y.(t) I Y.(t)

i=l
X

i=l
1

where Y. (t) is the output produced by the ith firm when labor has been

efficiently allocated. Thus a is a weighted average of the individual a.,

the weights being proportional to the individual firm outputs. We have

already seen, however, that the estimate of labor's share given by the

aggregate Cobb-Douglas a, like the other parameters is usually within

the range of the corresponding micro-parameters, in this case the a., so

that it is plausible that when labor's share is constant, the estimate of

a will come close to a (although the a is not a weighted average of the a.

and does not have the same weights)

.

This shows that labor's share will be roughly constant if relative
outputs are roughly constant, which will occur, for example, if the 3%

labor trend and the coefficients just happen to offset the other trends
because increasing amounts of labor are assigned to relatively slow grow-
ing firms. If n = 2, such rough constancy of relative outputs is the only
way in which labor's share can be roughly constant; for n > 2, there are
other ways

.
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It thus follows from the success of the aggregate regressions in ex-

plaining output per man and the plausible appearance of a as within the

range of the a. that wages will tend to be well predicted when labor's

share is roughly constant. Indeed, the exceptions to this general rule

observed in the tables reporting the Hicks experiments are typically

cases in which the estimated a fails to lie in the indicated range, an

occurence which is probably due to the multicollinearity which affects

2
the Hicks regressions considerably more than the capital regressions.

This argument makes it very plausible that in these experiments rough

constancy of labor's share should lead to a situation in which an aggre-

gate Cobb-Douglas gives generally good results including good wage predic-

tions, even though the underlying technical relationships are not consis-

tent with the existence of any aggregate production function and even

though there is considerable relative movement in the underlying firm

variables. Whether such an argument or such results have much bearing on

a real world in which underlying relationships are more complicated and

aggregation takes place over labor and output as well as capital is neces-

sarily a somewhat open question. The suggestion is clear, however, that

labor's share is not roughly constant because the diverse technical rela-

tionships of modern economies are truly representable by an aggregate

Cobb-Douglas but rather that such relationships appear to be representable

by an aggregate Cobb-Douglas because labor's share happens to be roughly

constant. If this is so, then the reason for such rough constancy becomes

2
Recall that the results presented in the tables are those from re-

gressions including t for the Hicks experiments and excluding t for the

capital experiments.
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3
an important subject for further research.

If one rejects the Cobb-Douglas form in favor of an alternative aggre-

gate production function, the suggestion (though less direct this time)

remains that the apparent success of such a function in explaining wages

occurs not because such functions really represent the true state of tech-

nology but rather because their implications as to the stylized facts of

wage behavior agree with what happens to be going on anyway. The develop-

ment of the CES, for example, began with the observation that wages are

an increasing function of output per man and that the function involved

4
can be approximated by one linear in the logarithms. The present results

suggest (but only suggest) that the explanation of that wage-output per

man relationship may not be in the existence of an aggregate CES but ra-

ther that the apparent existence of an aggregate CES may be explained by

that relationship.

3
It is hard to believe that it is explained along the lines of

(7.2) by the existence of underlying Cobb-Douglas functions at the micro
level together with rough constancy of relative outputs. Relative outputs
do not seem very constant and, if they were, one would still want to know
why.

4
See Arrow, Chenery, Minnas, and Solow [1] .




