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NONNEGATIVE SQUARE MATRICES!
By Gerarp DEBREU AND I. N. HERSTEIN

1. INTRODUCTION

SQUaRE MATRICES, all of whose elements are nonnegative, have played
an important role in the probabilistic theory of finite Markov chains
(See [6] and the references there given) and, more recently, in the study
of linear models in economics {2] to [6], {10] to [12], [16] to [20], and
[24].

The properties of such matrices were first investigated by Perron
[22], [23], and then very thoroughly by Frobenius [7], [8], [9]. Lately
Wielandt [26] has given notably more simple proofs for the results of
Frobenius.

In Section 2 we study nonnegative indecomposable matrices from a
different point of view (that of the Brouwer fixed point theorem); a
concise proof of their basic properties is thus obtained. In Section 3
properties of a general nonnegative square matrix A are derived from
those of nonnegative indecomposable matrices. In Section 4 theorems
about the matrix sI — A are proved; they cover in a unified manner a
number of results recurringly used in economies. In Section 5 a systematic
study of the convergence of A” when p tends to infinity (4 is a general
complex matrix) is linked to combinatorial properties of nonnegative
square matrices. '

Unless otherwise specified, all matrices considered will have real
elements. We define for 4 = (a,,), B = (b,;):

A £ Bif ai; = b.',,' for all ’l:, j,

Aﬁ/BifA = Band A # B,
A < Bif a,, < by, for all 3.

IN

Primed letters denote transposes.
When A is an n-n matrix, Ar = TAT " denotes the transform of 4
by the nonsingular n-n matrix 7.

* This paper is a result of the work being done at the Cowles Commission for
Research in Economics on the “Theory of Resource Allocation’’ under subcontract
to the RAND Corporation. Based on Cowles Commission Discussion Paper,
Mathematics No. 414, February, 1952. To be reprinted as Cowles Commission
Paper, New Series, No. 76. .

Acknowledgment is due to staff members and guests of the Cowles Commission,
and to R. Solow who in particular pointed out to us that Alexandroff and Hopf
[1] had already suggested the use of Brouwer’s theorem in connection with the
problem of Section 2.
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2. NONNEGATIVE INDECOMPOSABLE MATRICES
An n-n matrix A (n = 2) is said to be indecomposable if for no permu-

tation matrix® I does 4, = MMANI = <gu jm> where Ay, Az are
22

square.

TaeorEM 1: Let A = 0 be tndecomposable. Then
1. A has a characteristic root r > 0 such that
2. to r can be associated an etgen-vector xy > 0;
3. if a is any characteristic root of A, | a| £ 7;
4. r increases when any element of A increases;
5. r 15 a simple root.

Proor: 1. (a) If £ > 0, then Az 2 0. For if Az = 0, A would have a
column of zeros, and so would not be indecomposable.

1. (b) 4 has a characteristic root r > 0.

Let S = {z e R" |z 2 0, 2_ z, = 1} be the fundamental simplex in
the Buclidean n-space, R". If z ¢ S, we define T'(z) = [1/p(z)]Ax where
p(x) > 0 is so determined that 7'(z) ¢ S [by (1.a) such a p exists for
every z e S]. Clearly T'(z) is a continuous transformation of § into itself,
so0, by the Brouwer fixed-point theorem (see for example [14]), there is
an 7o € S with 1y = T'(z) = [1/p(20)]Azs . Put r = p(x0).

2. 1y > 0. Suppose that after applying a proper II, Zp = <f)>, £>0.

.. . . e An Am) <E> _ (7'5
Partition A, accordingly. A, %, = %, yields < An ) \0) =\0) thus

Ant = 0, s0 An = 0, violating the indecomposability of A.

If M = (m;,) is a matrix, we henceforth denote by M* the matrix
M* = (|m,]|).

3-4. If0 < B < A, and if 8 is a characteristic root of B, then | 8| < r.
Moreover, | 8| = r implies B = A.

A’ is indecomposable and therefore has a characteristic root r; > 0
with an eigen-vector z; > 0: A'z; = ryz;. Moreover By = By. Taking
absolute values and using the triangle inequality, we obtain

() [8]y* = By* = Ay*. So
(i) | 8| 21y* < 2idy* = rnzy*.
Since z; > 0, z1y* > 0, thus | 8| < 1.

Putting B = A one obtains | @ | < 7, . In particular » < r; and since,
similarly, r < r, r1 is equal to r.

2 A permutation matrix is obtained by permuting the columns of an identity
matrix. IIAII! is obtained by performing the same permutation on the rows and
on the columns of 4.
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Going back to the comparison of B and 4 and assuming that | 8| =
r one gets from (i) and (ii)

ry* = By* = Ay*.

From ry* = Ay*, application of 2 gives y* > 0. Thus By* = Ay* to-
gether with B < A yields B = 4.
5.(a) If B 1s a principal submatriz of A and B a characteristic root of
B, Bl <
BoO

B is also a characteristic root of the n-n matrix B = (0 0> . Since 4

is indecomposable, B < A, for a proper M and | 8| < r (by 3-4).

5.(b) r is a simple root of ®(f) = det(tI — A) = 0.

®'(r) is the sum of the principal ( — 1)-(n — 1) minors of
det(rl — A). Let A, be one of the principal (n — 1)-(n — 1) subma-
trices of A. By 5(a) det(tI — A,) cannot vanish for { = r, whence
det(r] — A;) > 0and ®'(r) > 0.

With a proof practically identical to that of 3—4, one obtains the more
general result:

If B is a complex matriz such that B* < A, A indecomposable, and if 8
is a characteristic root of B, then | B| < r. Moreover | | = r tmplies
B* = A,

More precisely if 8 = re*, B = ¢’DAD™ where D is a diagonal mairiz
such that D* = I. A proof of this last fact is given in ([26] p. 646 lines
4-11).

From this can be derived

TaroreEM I1: Let A = 0 be indecomposable. If the characteristic equa-
tion det(tI — A) = 0 has altogether k roots of absolute value r, the sel of
n roots (with their orders of multiplicity) is invariant under a rotation

about the origin through an angle of 2w /k, but not under rotations through
smaller angles. Moreover there is a permutation matrix II such that

|_0 Ap 0 - 0

. 0 0 Axn - 0

(1) mant = - - - . .
0 0 0 - Awa,k
Ay 0 O - 0 J

with square submatrices on the diagonal.

3 As an immediate consequence of 4 one obtains:

Min, ¥, a,; £ r £ Max, 2; ay,

and one equality holds only if all row sums are equal (then they both hold).
This is proved by increasing (resp. decreasing) some elements of A so as to
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Again the reader is referred to the excellent proof of Wielandt [26,
p. 646-647].
If £ = 1, the indecomposable matrix A > 0 is said to be primitive.

3. NONNEGATIVE SQUARE MATRICES

If A is an n-n matrix, there clearly exists a permutation matrix II
such that

A, *
A,
gAn™! =

Ax |

where the Ay are square submatrices on the diagonal and every A4, is
either indecomposable or a 11 matrix.

The properties of A will therefore be easily derived from those of the
Ay . For example det(tI — A) = [[i; det(t] — 4;) and Theorem I
gives

TrerEoREM I*: If A = 0 4s a square matriz, then
1. A has a characteristic root r 2> 0 such that
2. to r can be associated an eigen-vector x, 2> 0;
3. if a is any characteristic root of A, | a| < r;
4. r does not decrease when an element of A increases.

Let r; be the maximal nonnegative characteristic root of Ay , we take
r = Max, 1, ; 1-3—4 are then immediate. To prove 2 we consider a se-
quence 4, of n-n matrices converging to 4 such that for all ¢ 4, > 0.
Let r. be the maximal positive characteristic root of 4,, z, > 0 its as-
sociated eigen-vector so chosen that z, € S, the fundamental simplex of
R”. Clearly r, tends to r. Let us then select z; ¢ S a limit point of the
set (z.); thus there is a subsequence z,, converging to z, > 0 and for
every J/, Az, = r.z., therefore Az, = rz, .

Statement 5 of Theorem I no longer holds, but 5.(a) becomes:

If B 1s a principal submairiz of A and B a characteristic root of B,
18] =

make all row sums equal to
Max; X a,, (resp. Min, X, a,,).

A similar result naturally holds for column sums.
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The proof, almost identical, now rests on 4 of Theorem I*.*

3. PROPERTIES OF 8I — A FOR 8 > r

In this section A = 0 is an n-n matriz, and r s its marimal nonnega-
tive characteristic root.

Lemma*: If for an x > 0, Az < sz (resp. =), then r < s (resp. 2).

If foranxz 2 0, Az < sz (resp. >), thenr < s (resp. >).

The proofs of the four statements being practically identical, we pre-
sent only the first one. Let zo > 0 be a characteristic vector of A’ as-
sociated with r (2 of Theorem I*): A’z = rxy. Ax £ sx with z > 0,
therefore zo Az < sxox ie., rzox < sxo x and, since zox > 0,r <s.

We now derive two theorems (IIT* and IIT) from the study of the
equation

(2) (I —A)x=y
TureoreM I11*: (s — A)™ = 0if and only if s > r.

Sufficiency. Since s > r, (2) has a unique solution z = (sI — 4)™'y
for every y; we show that ¥y = 0 implies x = 0.

If = had negative components (2) could be given the form [by proper
(identical) permutations of the rows and columns and partition]

sl — A1 — Am - X
=Y
— Ay sl — A, Xa

4 A stochastic n-n matriz P is defined by p.; > 0 for all ¢, j and ¥; p:;; = 1 for
all 7. Clearly 1 is a characteristic root of P (take an eigen-vector with all compo-
nents equal). 1 is therefore a root of some of the indecomposable matrices P, ,
P;, --- , Pu.Suppose that 1 is a root of P4, it follows from footnote (3) that all
row sums of P are equal to 1,i.e.,

E,J

nrPnt = Py 0

Py

This remark makes many properties of stochastic matrices (the subject of the
theory of finite Markov chains; see [6] and its references) ready consequences
of the results of this article.
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where 1 > 0, 22 = 0, y = 0. Therefore —(s] — A)z; — Az, = 0,

lLe., —(sI — Ay)x = Oie., 4121 = sx,. From the Lemma* the maximal

nonnegative characteristic root of A;, n = s, a contradiction to the fact
that r = r, (see end of Section 3) and s > r.

Necessity. Since (sI — A)™ = 0, toay > 0 corresponds an z = 0.
Therefore from sz — Az = y follows Az < sr and, by the Lemma*,
r<s.

If A is indecomposable these results can be sharpened to the

LEMMA: Let A be indecomposable.
If for anx > 0, Ax < sz (resp. =), thenr < s (resp. =).
If foranx z 0, Az < sz (resp. 2), then r < s (resp. >).

The proofs, practically identical to those of the Lemma*, use a positive
characteristic vector of A’ associated with 7. One of these statements
indeed has already been proved in 3-4 of Theorem I.

TrrorEM III: Let A be indecomposable. (sI — A)™ > 0 if and only
ifs>r. ‘

Sufficiency. We show that y 2> 0 implies x > 0. It is already known
(from the proof of sufficiency of Theorem III*) that & > 0. If z had
zero components, (2) could be given the form

sl — A1 - Alz Ty
=Y
- A21 sl — A2 o
where 2; = 0,2, > 0,y 2 0. Therefore — A2z, = 0, and, since 1z > 0,
Aje = 0 violating the indecomposability of A.

The Necessity has already been proved since (sI — A)™" > 0 implies
(sI —A)"=0"

TrEOREM IV: The principal minors of sSI — A of orders 1, -+ , n are
all positive if and only tf s > r.

Suffictency. det(tI — A) cannot vanish for ¢ > r, thus det(s] — A)
> 0 for s > r. Similarly, the maximal nonnegative characteristic root
of a principal submatrix of 4 is not larger than r (see end of Section
3); it is therefore smaller than s, and the corresponding minor of sI —
4 is positive.

Necessity. The derivative of order m(<n) of det(t — A) with respect
to ¢, for { = s, is a sum of principal minors of order (n — m)-(n — m)

® It is worth [12] emphasizing a result obtained in the proof of necessity of
Theorem IIT*.

Remark. Let A =z 0 (resp. A = 0 indecomposable) be a square matrix. If for a
y > 0 (resp.y > 0),z 2 0, then (s — A)™* = O[resp. (s — 4)~* > 0.

The proof for indecomposable matrices uses the Lemma instead of the Lemma*.
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of sI — A and thus is positive. As its derivatives of all orders (0, 1,
-, n — 1, n) are positive for { = s, the polynomial det(t] — A) can
vanish forno ¢t = sie., s > r.%’

Since a square matrix with nonpositive (resp. negative) off-diagonal
elements can always be given the form s/ — A where A = 0 (resp.
>0), many of the results of Arrow [2], Bray [3], Chipman [4], 6],
Georgescu-Roegen [10], Goodwin {11], Hawkins and Simon [12], Metzler
[15] to [18], Morishima® [19], Mosak [20], Solow |24] are contained in the
above.

5. CONVERGENCE? OF A?

TeEOREM V: Let A be a n-n compler matriz. The sequence A, A’
.-, A%, - - of its powers converges if and only tf

¢ Georgescu-Roegen [10] stated a result whose counterpart here would be the
following theorem (stronger than IV): The n northwest principal minors of sI — A
of orders 1, --- , n are all positive if and only if s > r.

7 We give a last property useful in economics [17}, [18].

Theorem. Let A > 0 be a square matrixz and let C.; be the cofactor of the it row,
7t column element of sI — A.If 8 > X; a.jfor all 7, then i ¢ 3 implies C. > C, .

Let us define the matrix B = (b,,) as follows:
bpa = Gpgif P 5 55 b = 03f 4 5 ¢ % J; by = 8/2 = byj .

B is indecomposable, moreover J,big = s, 2gbpe < s for p ¢ i. Therefore
(see footnote 3) the maximal positive characteristic root of B, r(B) < s. Thus
det (sI — B) > 0; a development according to the 7t row yields:

8/2C,, — 8/2C; > 0.

8 Morishima studies square matrices A such that for a permutation matrix II,

Aun A
OAII™! = 4, = ,
A2l A22
where An = 0 and Ay = 0 are square, 4,3 £ 0, Az £ 0. The relation

[1 o:l [Au Au] [I 0] I:Au —Am]
0 - Ay A2 ]l0 — - An Ag

shows how properties of A, can be immediately derived from those of the non-

negative matrix
[ All _A12:|
A8 =
—AZI AZZ

In particular A, and A2 have the same characteristic roots.
1
9 The Cesaro convergence of A7 i.e., the convergence of; (A+ A2+ ... 4 A7)

can be studied in exactly the same fashion.
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1. each characteristic root o of A satisfies either || < 1 or a = 1;

2

2. when the second case occurs the order of multiplicity of the root 1

equals the dimension of the eigen-vector space associated with that
r00tL.

There is a nonsingular complex matrix T such that

v '

Ar = TAT ' = J, where

is a square matrix on the diagonal and a, a characteristic root of A. To
every root a, corresponds at least one J; (for this reduction of A to its
Jordan canonical form see for example [25]).

Since

TAT™ = J?

_ Jq
A" converges if and only if every one of the J; converges. Let us there-
fore study one of them; for this purpose we drop the subscripts 7 and «.

J is a k-k matrix of the form J = al + M where M = (my,): ms =
1ift = s + 1, my = 0 otherwise. .

J? = o] + <11)>a9—1M + .- (k 3 1>ap—k+1Mk—1.

It is easily seen that for M*, m&% = 1if t = s + h and m® = 0 other-

st T

wise. Thus M* = 0 if b = k; also the nonzero elements of M™ and M™
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(h # Rh') never occur in the same place so J” converges if and only if
every term of the right-hand sum does.

The first term shows that necessarily either |a] < 1 or & = 1.

If |a| < 1, every term tends to zero and J” converges.

If & = 1 no term other than the first one converges and necessarily

= li.e., J = [1]; clearly J® converges in this case.

We wish, however, to obtain for this necessary and sufficient condition
of convergence an expression independent of a reduction to Jordan
canonical form.

Consider then an arbitrary n-n complex matrix A and let 4 be the
set of ¢ for which J, corresponds to the root 1. The equation Arx = =,
in which z is partitioned in the same way as Ar, yields J:z. = z, for
all ¢, ie.,
if 5 ¢4, z; =0
if7e9, all components of z, but the first one equal zero.

Thus the dimension of the eigen-vector space associated with the root-1
equals the number of elements of g. This number, in turn, equals the
order of multiplicity of the root 1 if and only if J; = [1] for all 7 € 4.

The above theorem and method of proof were first given by Olden-

burger [21].

We now assume that the limit C exists and give its expression. If 1 is
not a characteristic root of A, C = 0. Let therefore 1 be a root of A of
order . Thus z (resp. ¥), an eigen-vector of A (resp. A’) associated with
the root 1, has the form x = X% (resp. y = Y9) where X (resp. Y) is a
n-u matrix of rank u and £ (resp. %) is a u-1 matrix. For an arbitrary «
the relation AA% = A®'z gives in the limit ACz = Cz i.e., Cx =
X¢(z). To determine £(x) we remark that ¥’ = Y’A i.e., by iteration
Y’ = Y’A® and therefore Y’ = Y'C; thus Y’z = Y'Cz = Y'X¢(x).
Y’X is a nonsingular’ p-p matrix ie., &) = (Y’X)'Y’z. Finally for
allz, Cz = X(V'X) 'Y’z ie., C = X(Y'X)'Y".

CoRroLLARY: Let A = 0 be indecomposable and 1 be its maximal positive
characteristic root. The sequence A® converges if and only if A is primitive.

The necessity is obvious. The sufficiency follows from the fact that
1 is a simple root.
Let then z, > 0 (resp. yo > 0) be an eigen-vector of A (resp. A")

© Xy = TX (resp. Yp = Y'T-1) plays for Az the same role as X (resp. V")
does for A. Moreover Y'X = Y3Xr . The right-hand matrix is nonsingular for
the form taken by the Jordan matrix Ar in the convergence case implies that
the eigen-vector space U generated by Xr is identical with the eigen-vector
space V generated by Yr . Thus Y7Xr¢ = 0 implies Xr£ = 0 (there is no vector
different from zero in U perpendicular to V i.e., to U) therefore £ = 0 since the
rank of Xris u.
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associated with the root 1, the limit C' of A” has the simple expression
C = Zoyo/Yoo .

Clearly C > 0, thus if the indecomposable matrix A = 0 is primitive,
there is a positive integer m such that A® > 0 when p = m. The con-
verse is;lan immediate consequence of the decomposition (1) of Theo-
rem II.

Cowles Commission for Research in Economics
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