A safe operating space for humanity

Identifying and quantifying planetary boundaries that must not be transgressed could help prevent human activities from causing unacceptable environmental change, argue Johan Rockström and colleagues.

Although Earth has undergone many periods of significant environmental change, the planet’s environment has been unusually stable for the past 10,000 years. This period of stability — known to geologists as the Holocene — has seen human civilizations arise, develop and thrive. Such stability may now be under threat. Since the Industrial Revolution, a new era has arisen, the Anthropocene, in which human actions have become the main driver of global environmental change. This could see human activities push the Earth system outside the stable environmental state of the Holocene, with consequences that are detrimental or even catastrophic for large parts of the world.

During the Holocene, environmental change occurred naturally and Earth’s regulatory capacity maintained the conditions that enabled human development. Regular temperatures, freshwater availability and biogeochemical flows all stayed within a relatively narrow range. Now, largely because of a rapidly growing reliance on fossil fuels and industrialized forms of agriculture, human activities have reached a level that could damage the systems that keep Earth in the desirable Holocene state. The result could be irreversible and, in some cases, abrupt environmental change, leading to a state less conducive to human development. Without pressure from humans, the Holocene is expected to continue for at least several thousands of years.

Planetary boundaries
To meet the challenge of maintaining the Holocene state, we propose a framework based on ‘planetary boundaries’. These boundaries define the safe operating space for humanity with respect to the Earth system and are associated with the planet’s biophysical subsystems or processes. Although Earth’s complex systems sometimes respond smoothly to changing pressures, it seems that this will prove to be the exception rather than the rule. Many subsystems of Earth react in a nonlinear, often abrupt, way, and are particularly sensitive around threshold levels of certain key variables. If these thresholds are crossed, then important subsystems, such as a monsoon system, could shift into a new state, often with deleterious or potentially even disastrous consequences for humans.

Most of these thresholds can be defined by a critical value for one or more control variables, such as carbon dioxide concentration. Not all processes or subsystems on Earth have well-defined thresholds, although human actions that undermine the resilience of such processes or subsystems — for example, land and water degradation — can increase the risk that thresholds will also be crossed in other processes, such as the climate system.

We have tried to identify the Earth-system processes and associated thresholds which, if crossed, could generate unacceptable environmental change. We have found nine such processes for which we believe it is necessary to define planetary boundaries: climate change; rate of biodiversity loss (terrestrial and marine); interference with the nitrogen and phosphorus cycles; stratospheric ozone depletion; ocean acidification; global freshwater use; change in land use; chemical pollution; and atmospheric aerosol loading (see Fig. 1 and Table).

In general, planetary boundaries are values for control variables that are either at a ‘safe’ distance from thresholds — for processes with evidence of threshold behaviour — or at dangerous levels — for processes without...
evidence of thresholds. Determining a safe distance involves normative judgements of how societies choose to deal with risk and uncertainty. We have taken a conservative, risk-averse approach to quantifying our planetary boundaries, taking into account the large uncertainties that surround the true position of many thresholds. (A detailed description of the boundaries — and the analyses behind them — is given in ref. 10.)

Humanity may soon be approaching the boundaries for global freshwater use, change in land use, ocean acidification and interference with the global phosphorous cycle (see Fig. 1). Our analysis suggests that three of the Earth-system processes — climate change, rate of biodiversity loss and interference with the nitrogen cycle — have already transgressed their boundaries. For the latter two of these, the control variables are the rate of species loss and the rate at which N_2 is removed from the atmosphere and converted to reactive nitrogen for human use, respectively. These are rates of change that cannot continue without significantly eroding the resilience of major components of Earth-system functioning. Here we describe these three processes.

Climate change
Anthropogenic climate change is now beyond dispute, and in the run-up to the climate negotiations in Copenhagen this December, the international discussions on targets for climate mitigation have intensified. There is a growing convergence towards a ‘2 °C guardrail’ approach, that is, containing the rise in global mean temperature to no more than 2 °C above the pre-industrial level.

Our proposed climate boundary is based on two critical thresholds that separate qualitatively different climate-system states. It has two parameters: atmospheric concentration of carbon dioxide and radiative forcing (the rate of energy change per unit area of the globe as measured at the top of the atmosphere). We propose that human changes to atmospheric CO$_2$ concentrations should not exceed 350 parts per million by volume, and that radiative forcing should not exceed 1 watt per square metre above pre-industrial levels. Transgressing these boundaries will increase the risk of irreversible climate change, such as the loss of major ice sheets, accelerated sea-level rise and abrupt shifts in forest and agricultural systems. Current CO$_2$ concentration stands at 387 p.p.m.v. and the change in radiative forcing is 1.5 W m$^{-2}$ (ref. 11).

There are at least three reasons for our proposed climate boundary. First, current climate models may significantly underestimate the severity of long-term climate change for a given concentration of greenhouse gases12. Most models13 suggest that a doubling in atmospheric CO$_2$ concentration will lead to a global temperature rise of about 3 °C (with a probable uncertainty range of 2–4.5 °C) once the climate has regained equilibrium. But these models do not include long-term reinforcing feedback processes that further warm the climate, such as decreases in the surface area of ice cover or changes in the distribution of vegetation. If these slow feedbacks are included, doubling CO$_2$ levels gives an eventual temperature increase of 6 °C (with a probable uncertainty range of 4–8 °C). This would threaten the ecological life-support systems that have developed in the late Quaternary environment, and would severely challenge the viability of contemporary human societies.

The second consideration is the stability of the large polar ice sheets. Palaeoclimat14. data from the past 100 million years show that CO$_2$ concentrations were a major factor in the long-term cooling of the past 50 million years. Moreover, the planet was largely ice-free until CO$_2$ concentrations fell below 450 p.p.m.v. (±100 p.p.m.v.), suggesting that there is a critical threshold between 350 and 550 p.p.m.v. (ref. 12). Our boundary of 350 p.p.m.v. aims to ensure the continued existence of the large polar ice sheets.

Third, we are beginning to see evidence that some of Earth’s subsystems are already moving outside their stable Holocene state. This includes the rapid retreat of the summer sea ice in the Arctic ocean15, the retreat of mountain glaciers around the world16, the loss of mass from the Greenland and West Antarctic ice sheets17, the accelerated rates of sea-level rise during the past 10–15 years18.

Rate of biodiversity loss
Species extinction is a natural process, and would occur without human actions. However, biodiversity loss in the Anthropocene has accelerated massively. Species are becoming extinct at a rate that has not been seen since the last global mass-extinction event19. The fossil record shows that the background extinction rate for marine life is 0.1–1 extinctions per million species per year; for
mammals it is 0.2–0.5 extinctions per million species per year\[^{19,16}\]. Today, the rate of extinction of species is estimated to be 100 to 1,000 times more than what could be considered natural. As with climate change, human activities are the main cause of the acceleration. Changes in land use exert the most significant effect. These changes include the conversion of natural ecosystems into agriculture or into urban areas; changes in frequency, duration or magnitude of wildfires and similar disturbances; and the introduction of new species into land and freshwater environments\[^{17}\]. The speed of climate change will become a more important driver of change in biodiversity this century, leading to an accelerating rate of species loss\[^{18}\]. Up to 30% of all mammal, bird and amphibian species will be threatened with extinction this century\[^{19}\].

Biodiversity loss occurs at the local to regional level, but it can have pervasive effects on how the Earth system functions, and it interacts with several other planetary boundaries. For example, loss of biodiversity can increase the vulnerability of terrestrial and aquatic ecosystems to changes in climate and ocean acidity, thus reducing the safe boundary levels of these processes. There is growing understanding of the importance of functional biodiversity in preventing ecosystems from tipping into undesired states when they are disturbed\[^{20}\]. This means that apparent redundancy is required to maintain an ecosystem’s resilience. Ecosystems that depend on a few or single species for critical functions are vulnerable to disturbances, such as disease, and at a greater risk of tipping into undesired states\[^{21}\].

From an Earth-system perspective, setting a boundary for biodiversity is difficult. Although it is now accepted that a rich mix of species underpins the resilience of ecosystems\[^{22,21}\], little is known quantitatively about how much and what kinds of biodiversity can be lost before this resilience is eroded\[^{22}\]. This is particularly true at the scale of Earth as a whole, or for major subsystems such as the Borneo rainforests or the Amazon Basin. Ideally, a planetary boundary should capture the role of biodiversity in regulating the resilience of systems on Earth. Because science cannot yet provide such information at an aggregate level, we propose extinction rate as an alternative (but weaker) indicator. As a result, our suggested planetary boundary for biodiversity of ten times the background rates of extinction is only a very preliminary estimate. More research is required to pin down this boundary with greater certainty. However, we can say with some confidence that Earth cannot sustain the current rate of loss without significant erosion of ecosystem resilience.

Nitrogen and phosphorus cycles

Modern agriculture is a major cause of environmental pollution, including large-scale nitrogen- and phosphorus-induced environmental change\[^{23}\]. At the planetary scale, the additional amounts of nitrogen and phosphorus activated by humans are now so large that they significantly perturb the global cycles of these two important elements\[^{24,25}\].

Human processes — primarily the manufacture of fertilizer for food production and the cultivation of leguminous crops — convert around 120 million tonnes of N\(_2\) from the atmosphere per year into reactive forms — which is more than the combined effects from all Earth’s terrestrial processes. Much of this new reactive nitrogen ends up in the environment, polluting waterways and the coastal zone, accumulating in land systems and adding a number of gases to the atmosphere. It slowly erodes the resilience of important Earth subsystems. Nitrous oxide, for example, is one of the most important non-CO\(_2\) greenhouse gases and thus directly increases radiative forcing.

Anthropogenic distortion of the nitrogen cycle and phosphorus flows has shifted the state of lake systems from clear to turbid water\[^{26}\]. Marine ecosystems have been subject to similar shifts, for example, during periods of anoxia in the Baltic Sea caused by excessive nutrients\[^{27}\]. These and other nutrient-generated impacts justify the formulation of a planetary boundary for nitrogen and phosphorus flows, which we propose should be kept together as one boundary given their close interactions with other Earth-system processes.

Setting a planetary boundary for human modification of the nitrogen cycle is not straightforward. We have defined the boundary by considering the human fixation of N\(_2\) from the atmosphere as a giant ‘valve’ that controls a massive flow of new reactive nitrogen into Earth. As a first guess, we suggest that this valve should contain the flow of new reactive nitrogen to 25% of its current value, or about 35 million tonnes of nitrogen per year. Given the implications of trying to reach this target, much more research and synthesis of information is required to determine a more informed boundary.

Unlike nitrogen, phosphorus is a fossil mineral that accumulates as a result of geological processes. It is mined from rock and its uses range from fertilizers to toothpaste. Some 20 million tonnes of phosphorus is mined every year and around 8.5 million–9.5 million tonnes of it finds its way into the oceans\[^{28,29}\]. This is estimated to be approximately eight times the natural background rate of influx. Records of Earth history show that large-scale ocean anoxic events occur when critical thresholds of phosphorus inflow to the oceans are crossed. This potentially explains past mass extinctions of marine life. Modelling suggests that a sustained increase of phosphorus flowing into the oceans exceeding 20% of the natural background weathering was enough to induce past ocean anoxic events\[^{30}\].

Our tentative modelling estimates suggest that if there is a greater than tenfold increase in phosphorus flowing into the oceans (compared with pre-industrial levels), then anoxic ocean events become more likely within 1,000 years. Despite the large uncertainties involved, the state of current science and the present observations of abrupt phosphorus-induced regional anoxic events indicate that no more than 11 million tonnes of phosphorus per year should be allowed to flow into the oceans — ten times the natural background rate. We estimate that this boundary level will allow humanity to safely steer away from the risk of ocean anoxic events for more than 1,000 years, acknowledging that current levels already exceed critical thresholds for many estuaries and freshwater systems.

Delicate balance

Although the planetary boundaries are described in terms of individual quantities and separate processes, the boundaries are tightly coupled. We do not have the luxury of concentrating our efforts on any one of them in isolation from the others. If one boundary is transgressed, then other boundaries are also under serious risk. For instance, significant land-use changes in the Amazon could influence water resources as far away as Tibet\[^{30}\]. The climate-change boundary depends on staying on the safe side of the freshwater, land, aerosol, nitrogen–phosphorus, ocean and stratospheric boundaries. Transgressing the nitrogen–phosphorus boundary can erode the resilience of some marine ecosystems, potentially reducing their capacity to absorb CO\(_2\), and thus affecting the climate boundary.

The boundaries we propose represent a new approach to defining biophysical preconditions for human development. For the first time, we are trying to quantify the safe limit outside of which the Earth system cannot continue to function in a stable, Holocene-like state.

The approach rests on three branches of scientific enquiry. The first addresses the scale of human action in relation to the capacity of Earth to sustain it. This is a significant feature of the ecological economics research agenda\[^{31}\], drawing on knowledge of the essential role of the life-support properties of the
The evidence for human wellbeing is connected with the biophysical constraints for the growth of the economy and social development. The second is the work on understanding essential Earth processes, particularly including human actions, brought together in the field of global change research and sustainability science. The third field of enquiry is research into resilience and its links to complex dynamics and self-regulation of living systems, emphasizing thresholds and shifts between states.

Although we present evidence that three boundaries have been overstepped, there remain many gaps in our knowledge. We have tentatively quantified seven boundaries, but some of the figures are merely our first best guesses. Furthermore, because many of the boundaries are linked, exceeding one will have implications for others in ways that we do not as yet completely understand. There is also significant uncertainty over how long it takes to cause dangerous environmental change or to trigger other feedbacks that drastically reduce the ability of the Earth system, or important subsystems, to return to safe levels.

The evidence so far suggests that, as long as the thresholds are not crossed, humanity has the freedom to pursue long-term social and economic development.

Authors
Johan Rockström1, Will Steffen1, Kevin Noone1,3, Asa Persson1,4, F. Stuart Chapin, III2, Eric F. Lambin5, Timothy M. Lenton6, Marten Scheffer5, Carl Folke7, Hans Joachim Schellnhuber8, Björn Nykvist12, Cynthia A. de Wit6, Terry Hughes13, Sander van der Leeu15, Henning Rodhe10, Sverker Sörlin16, Peter K. Snyder26, Robert Costanza7, Uno Svedin20, Malin Falkenmark18, Louise Karlberg20, Terry Hughes13, Virginia J. Fabry13, James Hansen21, Brian Walker22, Diana Liverman23,24, Katherine Richardson25, Paul Crutzen26, Jonathan A. Foley27

1Stockholm Resilience Centre, Stockholm University, Kräftriket 2B, 10691 Stockholm, Sweden. 2Stockholm Environment Institute, Kräftriket 2B, 10691 Stockholm, Sweden. 3ANU Climate Change Institute, Australian National University, Canberra ACT 0200, Australia. 4Department of Applied Environmental Science, Stockholm University, 10691 Stockholm, Sweden. 5Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska 99775, USA. 6Department of Geography, Université Catholique de Louvain, 3 place Pasteur, B-1348 Louvain-la-Neuve, Belgium. 7School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK. 8Aquatic Ecology and Water Quality Management Group, Wageningen University, PO Box 9101, 6700 HB Wageningen, the Netherlands. 9The Beijer Institute of Ecological Economics, Royal Swedish Academy of Sciences, PO Box 50005, 10405 Stockholm, Sweden. 10Potsdam Institute for Climate Impact Research, PO Box 60 12 03, 14412 Potsdam, Germany. 11Environmental Change Institute and Tyndall Centre, Oxford University, Oxford OX1 3QY, UK. 12ARC Centre of Excellence for Coral Reef Studies, James Cook University, Queensland 4811, Australia. 13School of Human Evolution & Social Change, Arizona State University, PO Box 872402, Tempe, Arizona 85287-2402, USA. 14Department of Meteorology, Stockholm University, 10691 Stockholm, Sweden. 15Division of History of Science and Technology, Royal Institute of Technology, Teknikringen 76, 100 44 Stockholm, Sweden. 16Department of Soil, Water, and Climate, University of Minnesota, 439 Borlaug Hall, 1991 Upper Buford Circle, St. Paul, MN 55108-6028, USA. 17Gund Institute for Ecological Economics, University of Vermont, Burlington, VT 05405, USA. 18Stockholm International Water Institute, Drottninggatan 33, 11351 Stockholm, Sweden. 19The H. John Heinz III Center for Science, Economics and the Environment, 900 17th Street, NW, Suite 7200, Washington DC 20006, USA. 20Department of Biological Sciences, California State University San Marcos, 333 S Twin Oaks Valley Rd, San Marcos, CA 92069-0001, USA. 21NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025, USA. 22Commonwealth Scientific and Industrial Organization, Sustainable Ecosystems, Canberra, ACT 2601, Australia. 23Environmental Change Institute, University of Oxford, Oxford OX1 3QY, UK. 24Institute of the Environment, University of Arizona, Tucson AZ 85721, USA. 25The Faculty for Natural Sciences, Tagensvej 16, 2200 Copenhagen N, Denmark. 26Max Planck Institute for Chemistry, PO Box 30 60, 55020 Mainz, Germany. 27Institute on the Environment, University of Minnesota, 325 Vo Tech Building, 1954 Buford Avenue, St Paul, MN 55108, USA.

© 2009 Macmillan Publishers Limited. All rights reserved.