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1 Introduction

“The global recovery has been disappointing (...) Year after year we have

had to explain from mid-year on why the global growth rate has been lower

than predicted as little as two quarters back”. Stanley Fischer, August 2014.

The slow pace of the recovery from the Great Recession of 2007-2009 has prompted

questions about whether the long-run growth rate of GDP in advanced economies

is lower now than it has been on average over the past decades (see e.g. Fernald,

2014, Gordon, 2014b, Summers, 2014). Indeed, forecasts of US and global real GDP

growth have persistently produced negative forecast errors over the last five years.1

As emphasized by Orphanides (2003), real-time misperceptions about the long-run

growth of the economy can play a large role in monetary policy mistakes. Moreover,

small changes in assumptions about the long-run growth rate of output can have large

implications on fiscal sustainability calculations.2 This calls for a framework that takes

the uncertainty about long-run growth seriously and can inform decision-making in real

time. In this paper, we present a dynamic factor model (DFM) which allows for gradual

changes in the mean and the variance of real output growth. By incorporating a large

number of economic activity indicators, DFMs are capable of precisely estimating the

cylical comovements in macroeconomic data in a real-time setting. Our model exploits

this to track changes in the long-run growth rate of GDP in a timely and reliable

manner, separating them from their cyclical counterpart.

The evidence of a decline in long-run US GDP growth is accumulating, as docu-

mented by the recent growth literature such as Fernald and Jones (2014). Lawrence

1For instance, Federal Open Market Committee (FOMC) projections since 2009 expected US
growth to accelerate substantially, only to downgrade the forecast back to 2% throughout the course
of the subsequent year. An analysis of forecasts produced by international organizations and private
sector economists reveals the same pattern, see Pain et al. (2014) for a retrospective.

2See for example Auerbach (2011).
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Summers and Robert Gordon have been articulating a rather pessimistic view of long-

run growth which contrasts with the optimism prevailing before the Great Recession

(see Jorgenson et al., 2006). To complement this evidence, we start the analysis by pre-

senting the results of two popular structural break tests, Nyblom (1989) and Bai and

Perron (1998). Both suggest that a possible shift in the mean of US GDP growth exists,

the latter approach suggesting that a break probably occurred in the early part of the

2000’s.3 However, sequential testing using real-time data reveals that the break would

not have been detected at conventional significance levels until as late as mid-2014,

highlighting the problems of conventional break tests for real-time analysis (see also

Benati, 2007). To address this issue, we introduce two novel features into an otherwise

standard DFM of real activity data. First, we allow the mean of GDP growth to drift

gradually over time. As emphasized by Cogley (2005), if the long-run output growth

rate is not constant, it is optimal to give more weight to recent data when estimating

its current state. By taking a Bayesian approach, we can combine our prior beliefs

about the rate at which the past information should be discounted with the informa-

tion contained in the data. We also characterize the uncertainty around estimates of

long-run growth stemming from both filtering and parameter uncertainty. Second, we

allow for stochastic volatility (SV) in the innovations to both factors and idiosyncratic

components. Given our interest in studying the entire postwar period, the inclusion of

SV is essential to capture the substantial changes in the volatility of output that have

taken place in this sample, such as the “Great Moderation” first reported by Kim and

Nelson (1999a) and McConnell and Perez-Quiros (2000), as well as the cyclicality of

macroeconomic volatility as documented by Jurado et al. (2014).

When applied to US data, our model concludes that long-run GDP growth declined

meaningfully during the 2000’s and currently stands at about 2.25%, almost one per-

3This finding is consistent with the analysis of US real GDP of Luo and Startz (2014), as well as
Fernald (2014), who applies the Bai and Perron (1998) test to US labor productivity.
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centage point lower than the postwar average. The results are more consistent with

a gradual decline rather than a discrete break. Since in-sample results obtained with

revised data often underestimate the uncertainty faced by policymakers in real time,

we repeat the exercise using real-time vintages of data. By the summer of 2011 the

model would have concluded that a significant decline in long-run growth was behind

the slow recovery, well before the structural break tests became conclusive. Since the

seminal contributions of Evans (2005) and Giannone et al. (2008) DFMs have become

the standard tool to track GDP.4 Taking into account the variation in long-run GDP

growth improves substantially the point and density GDP “nowcasts” produced by

this class of models. Furthermore, we show that our DFM provides an advantage over

traditional trend-cycle decompositions in detecting changes in the long-run growth rate

of GDP by using a larger amount of information.

Finally, we extend our model in order to disentangle the drivers of secular fluctua-

tions of GDP growth. Edge et al. (2007) emphasize the relevance as well as the difficulty

of tracking permanent shifts in productivity growth in real time. In our framework,

by adding information about aggregate hours worked, long-run output growth can be

decomposed into labor productivity and labor input trends.5 The results of this de-

composition exercise point to a slowdown in labor productivity as the main driver of

recent weakness in GDP growth. Applying the model to other advanced economies,

we provide evidence that the weakening in labor productivity appears to be a global

phenomenon.

Our work is closely related to two strands of literature. The first one encompasses

papers that allow for structural changes within the DFM framework. Del Negro and

4An extensive survey of the nowcasting literature is provided by Banbura et al. (2012), who also
demonstrate, in a real-time context, the good out-of-sample performance of DFM nowcasts.

5An alternative approach to extract the long run component of productivity would be to extract
this directly from measured labour productivity (see e.g. Roberts, 2001, Benati, 2007, and Edge
et al., 2007). Our approach has the advantage that hours are clearly more cyclical and less noisy than
measured productivity, which naturally enhances the precision of the estimated long run components.
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Otrok (2008) model time variation in factor loadings and volatilities, while Marcellino

et al. (2014) show that the addition of SV improves the performance of the model for

short-term forecasting of euro area GDP.6 Acknowledging the importance of allowing

for time-variation in the means of the variables, Stock and Watson (2012) pre-filter

their dataset in order to remove any low-frequency trends from the resulting growth

rates using a biweight local mean. In his comment to their paper, Sims (2012) suggests

to explicitly model, rather than filter out, these long-run trends, and emphasizes the

importance of evolving volatilities for describing and understanding macroeconomic

data. We see the present paper as extending the DFM literature, and in particular its

application to tracking GDP, in the direction suggested by Chris Sims. The second

strand of related literature takes a similar approach to decomposing long-run GDP

growth into its drivers, in particular Gordon (2010, 2014a) and Reifschneider et al.

(2013). Relative to these studies, we obtain a substantially less pessimistic and more

precise estimate of the long-run growth of GDP than these studies in the latest part

of the sample, which we attribute to the larger amount of information we incorporate

on cyclical developments.

The remainder of this paper is organized as follows. Section 2 presents preliminary

evidence of a slowdown in long-run US GDP growth. Section 3 discusses the implica-

tions of time-varying long-run output growth and volatility for DFMs and presents our

model. Section 4 applies the model to US data and documents the decline in long-run

growth. The implications for tracking GDP in real time as well as the key advantages of

our methodology are discussed. Section 5 decomposes the changes in long-run output

growth into its underlying drivers. Section 6 concludes.

6While the model of Del Negro and Otrok (2008) includes time-varying factor loadings, the means
of the observable variables are still treated as constant.
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2 Preliminary Evidence

The literature on economic growth reveals a view of the long-run growth rate as

a process that evolves over time. It is by now widely accepted that a slowdown in

productivity and therefore long-run output growth occurred in the early 1970’s (for

a retrospective see Nordhaus, 2004), and that faster productivity in the IT sector led

to an acceleration in the late 1990’s (Oliner and Sichel, 2000). In contrast, in the

context of econometric modeling the possibility that long-run growth is time-varying

is the source of a long-standing controversy. In their seminal contribution, Nelson

and Plosser (1982) model the (log) level of real GDP as a random walk with drift.

This implies that after first-differencing, the resulting growth rate fluctuates around a

constant mean, an assumption still embedded in many econometric models. After the

slowdown in productivity became apparent in the 1970’s, many papers such as Clark

(1987) modeled the drift term as an additional random walk, implying that the level

of GDP is integrated of order two. The latter assumption would also be consistent

with the local linear trend model of Harvey (1985), the Hodrick and Prescott (1997)

filter, and Stock and Watson (2012)’s practice of removing a local biweight mean

from the growth rates before estimating a DFM. The I(2) assumption is nevertheless

controversial since it implies that the growth rate of output can drift without bound.

Consequently, papers such as Perron and Wada (2009), have modeled the growth rate

of GDP as stationary around a trend with one large break around 1973.

During the recovery from the Great Recession US GDP has grown well below its

postwar average. There are two popular strategies that could be followed from a

frequentist perspective to detect parameter instability or the presence of breaks in the

mean growth rate. The first one is Nyblom’s (1989) L-test as described in Hansen

(1992), which tests the null hypothesis of constant parameters against the alternative

6



that the parameters follow a martingale. Modeling real GDP growth as an AR(1)

over the sample 1960-2014 this test rejects the stability of the constant term at 10%

whereas the stability of the autoregressive coefficient cannot be rejected.7 The second

commonly used approach, which can determine the number and timing of multiple

discrete breaks, is the Bai and Perron (1998) test. This test finds evidence in favor of a

single break in mean of real US GDP growth at the 5%-level. The most likely break is

in the second quarter of 2000.8 Using the latter methodology, Fernald (2014) provides

evidence for breaks in labor productivity in 1973:Q2, 1995:Q3, and 2003:Q1, and links

the latter two to developments in the IT sector. From a Bayesian perspective, Luo and

Startz (2014) calculate the posterior probability of a single break and find the most

likely break date to be 2006:Q1 for the full postwar sample and 1973:Q1 for a sample

excluding the 2000’s.

The above results highlight that substantial evidence for a recent change in the mean

of US GDP growth since the 1960’s has built up. However, the strategy of applying

conventional tests and introducing deterministic breaks into econometric models is not

satisfactory for the purposes of real-time decision making. In fact, the detection of

change in the mean of GDP growth can arrive with substantial delay. To demonstrate

this, a sequential application of the Nyblom (1989) and Bai and Perron (1998) tests

using real-time data is presented in Figure 1. This reveals that a break would not have

been detected at the 5% significance levels until as late as mid-2014, which is almost

fifteen years later than the actual break data suggested by the Bai and Perron (1998)

procedure. The Nyblom (1989) test, which is designed to detect gradual change, first

becomes significant at the 10%-level in 2011, somewhat faster than the discrete break

7The same results hold for an AR(2) specification. In both cases, the stability of the variance is
rejected at the 1%-level. Interestingly, McConnell and Perez-Quiros (2000) also use this test and show
that in their sample there is evidence for instability only in the variance but not in the constant term
or the autoregressive coefficient of the AR(1).

8The second most likely break, which is not statistically significant, is estimated to have occurred
in the second quarter of 1973. Appendix A provides the full results of the tests and further discussion.
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Figure 1: Real-Time Test Statistics of the Nyblom and Bai-Perron Tests
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Note: The solid gray and blue lines are the values of the test statistics obtained from sequentially
re-applying the Nyblom (1989) and Bai and Perron (1998) tests in real time as new National Accounts
vintages are being published. In both cases, the sample starts in 1960 and the test is re-applied for
every new data release occurring after the beginning of 2000. The dotted line plots the 5% critical
value of the test, while the dashed line plots the 10% critical value.

test. This highlights the importance of an econometric framework capable of quickly

adapting to changes in long-run growth as new information arrives.

3 Econometric Framework

DFMs in the spirit of Geweke (1977), Stock and Watson (2002) and Forni et al.

(2009) capture the idea that a small number of unobserved factors drives the comove-

ment of a possibly large number of macroeconomic time series, each of which may be

contaminated by measurement error or other sources of idiosyncratic variation. Their

theoretical appeal (see e.g. Sargent and Sims, 1977 or Giannone et al., 2006), as well as

their ability to parsimoniously model very large datasets, have made them a workhorse

of empirical macroeconomics. Giannone et al. (2008) and Banbura et al. (2012) have

pioneered the use of DFMs to produce current-quarter forecasts (“nowcasts”) of GDP
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growth by exploiting more timely monthly indicators and the factor structure of the

data. Given the widespread use of DFMs to track GDP in real time, one objective of

this paper is to make these models robust to changes in long-run growth. Moreover,

we propose that the argument that information contained in a broad panel of monthly

indicators improves the precision of short-run GDP forecasts extends to the estimation

of the time-varying long-run growth rate of GDP. In essence, as the number of indi-

cators becomes large, the cyclical component of GDP growth is estimated arbitrarily

well, facilitating the decomposition of residual variations into persistent movements

in long-run growth and short-lived noise. Section 4.5 expands in more detail on the

reasoning behind this key argument for choosing the DFM framework.

While we remain agnostic about the ultimate form of structural change in the

GDP process, we propose specifying its long-run growth rate as a random walk. Our

motivation is similar to Primiceri (2005). While in principle it is unrealistic to conceive

that GDP growth could wander in an unbounded way, as long as the variance of the

process is small and the drift is considered to be operating for a finite period of time,

the assumption is innocuous. Moreover, modeling the trend as a random walk is more

robust to misspecification when the actual process is indeed characterized by discrete

breaks, whereas models with discrete breaks might not be robust to the true process

being a random walk.9 Finally, the random walk assumption also has the desirable

feature that, unlike stationary models, confidence bands around GDP forecasts increase

with the forecast horizon, reflecting uncertainty about the possibility of future breaks

or drifts in long-run growth.

9We demonstrate this point with the use of Monte Carlo simulations, showing that a random walk
trend ‘learns’ quickly about a large break once it has occurred. On the other hand, the random walk
does not detect a drift when there is not one, despite the presence of a large cyclical component. See
Appendix B for the full results of these simulations.
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3.1 The Model

Let yt be an (n × 1) vector of observable macroeconomic time series, and let ft

denote a (k × 1) vector of latent common factors. It is assumed that n >> k, so that

the number of observables is much larger than the number of factors. Setting k = 1

and ordering GDP growth first (therefore GDP growth is referred to as y1,t) we have10

y1,t = α1,t + ft + u1,t, (1)

yi,t = αi + λift + ui,t, i = 2, . . . , n (2)

where ui,t is an idiosyncratic component specific to the ith series and λi is its loading

on the common factor.11 Since the intercept α1,t is time-dependent in equation (1),

we allow the mean growth rate of GDP to vary. We choose to do so only for GDP,

which is sufficient to track changes in its long-run growth while keeping the model as

parsimonious as possible.12 If some other variable in the panel was at the center of

the analysis or there was suspicion of changes in its mean, an extension to include

additional time-varying intercepts would be straightforward. In fact, for theoretical

reasons it might be desirable to impose that the drift in long-run GDP growth is

shared by other series such as consumption, a possibility that we consider in Section 5,

10For the purpose of tracking GDP with a large number of closely related indicators, the use of
one factor is appropriate (see Section 4.2) and we therefore focus on the case of k = 1 for expositional
clarity in this section.

11The loading for GDP is normalized to unity. This serves as an identifying restriction in our
estimation algorithm. Bai and Wang (2012) discuss minimal identifying assumptions for DFMs.

12The alternative approach of including a time-varying intercept for all indicators (see, e.g. Creal
et al., 2010 or Fleischman and Roberts, 2011) implies that the number of state variables increases
with the number of observables. This not only imposes an increasing computational burden, but in
our view compromises the parsimonious structure of the DFM framework, in which the number of
degrees of freedom does not decrease as more variables are added. It is also possible that allowing
for time-variation in a large number of coefficients would improve in-sample fit at the cost of a loss
of efficiency in out-of-sample forecasting. For the same reason we do not allow for time-variation in
the autoregressive dynamics of factors and idiosyncratic components, given the limited evidence on
changes in the duration of business cycles (see e.g. Ahmed et al., 2004).
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where we also include a time-varying intercept for aggregate hours worked and explore

the underlying drivers of the long-run growth decline.

The laws of motion for the factor and idiosyncratic components are, respectively,

Φ(L)ft = εt, (3)

ρi(L)ui,t = ηi,t (4)

Φ(L) and ρi(L) denote polynomials in the lag operator of order p and q, respectively.

Both (3) and (4) are covariance stationary processes. The disturbances are distributed

as εt
iid∼ N(0, σ2

ε,t) and ηi,t
iid∼ N(0, σ2

ηi,t
), where the SV is captured by the time-variation

in σ2
ε,t and σ2

ηi,t
.13 The idiosyncratic components, ηi,t, are cross-sectionally orthogonal

and are assumed to be uncorrelated with the common factor at all leads and lags.

Finally, the dynamics of the model’s time-varying parameters are specified to follow

driftless random walks:

α1,t = α1,t−1 + vα,t, vα,t
iid∼ N(0, ςα,1) (5)

log σεt = log σεt−1 + vε,t, vε,t
iid∼ N(0, ςε) (6)

log σηi,t = log σηi,t−1
+ vηi,t , vηi,t

iid∼ N(0, ςη,i) (7)

where ςα,1, ςε and ςη,i are scalars.14

Note that in the standard DFM, it is assumed that εt and ηi,t are iid. Moreover,

13Once SV is included in the factors, it must be included in all idiosyncratic components as well. In
fact, the Kalman filter estimates of the state vector will depend on the signal-to-noise ratios, σεt/σηi,t .
If the numerator is allowed to drift over time but the denominator is kept constant, we might be
introducing into the model spurious time-variation in the signal-to-noise ratios, implying changes in
the precision with which the idiosyncratic components can be distinguished from the common factors.

14For the case of more than one factor, following Primiceri (2005), the covariance matrix of ft,
denoted by Σε,t, can be factorized without loss of generality as AtΣε,tA

′
t = ΩtΩ

′
t, where At is a lower

triangular matrix with ones in the diagonal and covariances aij,t in the lower off-diagonal elements,
and Ωt is a diagonal matrix of standard deviations σεi,t . Furthermore, for k > 1, ςε would be an
unrestricted (k × k) matrix.
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both the factor VAR in equation (3) and the idiosyncratic components (4) are usu-

ally assumed to be stationary, so by implication the elements of yt are assumed to

be stationary (i.e. the original data have been differenced appropriately to achieve

stationarity). In equations (1)-(7) we have relaxed these assumptions to allow for a

stochastic trend in the mean of GDP and SV. Our model nests specifications that have

been previously proposed for tracking GDP. We obtain the DFM with SV of Marcellino

et al. (2014) if we shut down time variation on the mean of GDP, i.e. set ςα,1 = 0. If

we further shut down the SV, i.e. set ςα,1 = ςε = ςη,i = 0, we obtain the specification

of Banbura and Modugno (2014) and Banbura et al. (2012).

3.2 Dealing with Mixed Frequencies and Missing Data

Tracking activity in real time requires a model that can efficiently incorporate

information from series measured at different frequencies. In particular, it must include

both the growth rate of GDP, which is quarterly, and more timely monthly indicators

of real activity. Therefore, the model is specified at monthly frequency, and following

Mariano and Murasawa (2003), the (observed) quarterly growth rate can be related to

the (unobserved) monthly growth rate and its lags using a weighted mean:

yq1,t =
1

3
ym1,t +

2

3
ym1,t−1 + ym1,t−2 +

2

3
ym1,t−3 +

1

3
ym1,t−4, (8)

where only every third observation of yq1,t is actually observed. Substituting (1) into

(8) yields a representation in which the quarterly variable depends on the factor and

its lags. The presence of mixed frequencies is thus reduced to a problem of missing

data in a monthly model.

Besides mixed frequencies, additional sources of missing data in the panel include:

the “ragged edge” at the end of the sample, which stems from the non-synchronicity

12



of data releases; missing data at the beginning of the sample, since some data series

have been created or collected more recently than others; and missing observations

due to outliers and data collection errors. Below we will present a Bayesian estimation

method that exploits the state space representation of the DFM and jointly estimates

the latent factors, the parameters, and the missing data points using the Kalman filter

(see Durbin and Koopman 2012 for a textbook treatment).

3.3 State Space Representation and Estimation

The model features autocorrelated idiosyncratic components (see equation (4)). In

order to cast it in state-space form, we redefine the system for the monthly indicators

in terms of quasi-differences (see e.g. Kim and Nelson 1999b, pp. 198-199 and Bai

and Wang 2012).15 Specifically, defining ȳi,t ≡ (1 − ρi(L))yi,t for i = 2, . . . , n and

ỹt = [y1,t, ȳ2,t, . . . , ȳn,t]
′, the model can be compactly written in the following state-

space representation:

ỹt = HXt + η̃t, (9)

Xt = FXt−1 + et, (10)

where the state vector stacks together the time-varying intercept, the factors, and the

idiosyncratic component of GDP, as well as their lags required by equation (8). To be

precise, Xt = [α1,t, . . . , α1,t−4, ft, . . . , ft−mp, u1,t, . . . , u1,t−mq]
′, where mp = max(p, 4)

and mq = max(q, 4). Therefore the measurement errors, η̃t
′ = [0, η̄t

′] with η̄t =

[η2,t, . . . , ηn,t]
′∼N(0, Rt), and the transition errors, et∼N(0, Qt), are not serially corre-

lated. The system matrices H, F , Rt and Qt depend on the hyperparameters of the

15As an alternative, Banbura and Modugno (2014) suggest including these components as additional
elements of the state vector. This solution has the undesirable feature that the number of state
variables will increase with the number of observables, leading to a loss of computational efficiency.
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DFM, λ,Φ, ρ, σε,t, σηi,t , ςα1 , ςε, ςη.

The model is estimated with Bayesian methods simulating the posterior distribution

of parameters and factors using a Markov Chain Monte Carlo (MCMC) algorithm. We

closely follow the Gibbs-sampling algorithm for DFMs proposed by Bai and Wang

(2012), but extend it to include mixed frequencies, the time-varying intercept, and

SV.16 The SVs are sampled using the approximation of Kim et al. (1998), which is

considerably faster than the alternative Metropolis-Hasting algorithm of Jacquier et al.

(2002). Our complete sampling algorithm together with the details of the state space

representation can be found in Appendix C.

4 Evidence for US Data

4.1 Priors and Model Settings

We wish to impose as little prior information as possible. In our baseline results

we use uninformative priors for the factor loadings and the autoregressive coefficients

of factors and idiosyncratic components. The variances of the innovations to the time-

varying parameters, namely ςα,1, ςε and ςη,i in equations (5)-(7) are however difficult

to identify from the information contained in the likelihood function alone. As the

literature on Bayesian VARs documents, attempts to use non-informative priors for

these parameters will in many cases produce relatively high posterior estimates, i.e. a

relatively large amount of time-variation. While this will tend to improve the in-sample

fit of the model it is also likely to worsen out-of-sample forecast performance. We

therefore use priors to shrink these variances towards zero, i.e. towards the benchmark

16Simulation algorithms in which the Kalman Filter is used over thousands of replications frequently
produce a singular covariance matrix due to the accumulation of rounding errors. Bai and Wang (2012)
propose a modification of the well-known Carter and Kohn (1994) algorithm to prevent this problem
which improves computational efficiency and numerical robustness. We thank Jushan Bai and Peng
Wang for providing the Matlab code for the square-root form Kalman Filter.
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model, which excludes time-varying long-run GDP growth and SV. In particular, we

set an inverse gamma prior with one degree of freedom and scale equal to 0.001 for

ςα,1.
17 For ςε and ςη we set an inverse gamma prior with one degree of freedom and

scale equal to 0.0001.

In our empirical application the number of lags in the polynomials Φ(L) and ρ(L)

is set to 2 (p = 2 and q = 2 respectively) in the spirit of Stock and Watson (1989). The

model can be easily extended to include more lags in both transition and measurement

equations, i.e. to allow the factors to load some variables with a lag. In the latter case,

it is again sensible to avoid overfitting by choosing priors that shrink the additional

lag coefficients towards zero (see e.g. D’Agostino et al., 2012, and Luciani and Ricci,

2014).

4.2 Data

A number of studies on DFMs, including Giannone et al. (2005), Banbura et al.

(2012), Alvarez et al. (2012) and Banbura and Modugno (2014) highlight that the

inclusion of nominal or financial variables, of disaggregated series beyond the main

headline indicators, or the use of more than one factor do not meaningfully improve

the precision of real GDP forecasts. We follow them in focusing on a medium-sized

panel of real activity data including only series for each economic category at the

highest level of aggregation, and set the number of factors k = 1. The single factor

can in this case be interpreted as a coincident indicator of economic activity (see e.g.

Stock and Watson, 1989, and Mariano and Murasawa, 2003). Relative to the latter

studies, which include just four and five indicators respectively, the conclusion of the

literature is that adding additional indicators, in particular surveys, does improve the

17To gain an intuition about this prior, note that over a period of ten years, this would imply
that the posterior mean of the long-run growth rate is expected to vary with a standard deviation of
around 0.4 percentage points in annualized terms, which is a fairly conservative prior.
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precision of short-run GDP forecasts (Banbura et al., 2010). A key finding of our

paper is that survey indicators are also informative to separate the cyclical component

of GDP growth from its long-run counterpart. This is because in many cases these

surveys are by construction stationary, and have a high signal-to-noise ratio, which

provides a clean signal of the cycle excluding movements in long-run growth.

Our panel of 26 data series is shown in Table 1. Since we are interested in covering

a long sample in order to study the fluctuations in long-run growth, we start our panel

in January 1960. Here we take full advantage of the Kalman filter’s ability to deal with

missing observations at any point in the sample, and we are able to incorporate series

which start as late as 2007.18

4.3 In-Sample Results

We estimate the model with 7000 replications of the Gibbs-sampling algorithm, of

which the first 2000 are discarded as burn-in draws and the remaining ones are kept

for inference.19 Panel (a) of Figure 2 plots the posterior median, together with the

68% and 90% posterior credible intervals of the long-run growth rate. This estimate is

conditional on the entire sample and accounts for both filtering and parameter uncer-

tainty. For comparison, the well-known estimate of potential growth produced by the

Congressional Budget Office (CBO) is also plotted. Several features of our estimate

of long-run growth are worth noting. An initial slowdown is visible around the late

18Our criteria for data selection is similar to the one proposed by Banbura et al. (2012), who suggest
including the headline series that are followed closely by financial market participants. In practice,
we consider that a variable is widely followed by markets when survey forecasts of economists are
available on Bloomberg prior to the release. Some surveys appear to be better aligned with the rest
of the variables after taking a 12 month difference transformation, a feature that is consistent with
these indicators sometimes being regarded as leading rather than coincident.

19Thanks to the efficient state space representation discussed above, the improvements in the
simulation smoother proposed by Bai and Wang (2012), and other computational improvements we
implemented, the estimation is very fast. Convergence is achieved after only 1500 iterations, which
take less than 20 minutes in MATLAB using a standard Intel 3.6 GHz computer with 16GB of DDR3
Ram.
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Table 1:
Data series used in empirical analysis

Freq. Start Date Transformation Publ. Lag

Hard Indicators
Real GDP Q Q1:1960 % QoQ Ann. 26
Industrial Production M Jan 60 % MoM 15
New Orders of Capital Goods M Mar 68 % MoM 25
Light Weight Vehicle Sales M Feb 67 % MoM 1
Real Personal Consumption Exp. M Jan 60 % MoM 27
Real Personal Income less Trans. Paym. M Jan 60 % MoM 27
Real Retail Sales Food Services M Jan 60 % MoM 15
Real Exports of Goods M Feb 68 % MoM 35
Real Imports of Goods M Feb 69 % MoM 35
Building Permits M Feb 60 % MoM 19
Housing Starts M Jan 60 % MoM 26
New Home Sales M Feb 63 % MoM 26
Payroll Empl. (Establishment Survey) M Jan 60 % MoM 5
Civilian Empl. (Household Survey) M Jan 60 % MoM 5
Unemployed M Jan 60 % MoM 5
Initial Claims for Unempl. Insurance M Jan 60 % MoM 4

Soft Indicators
Markit Manufacturing PMI M May 07 - -7
ISM Manufacturing PMI M Jan 60 - 1
ISM Non-manufacturing PMI M Jul 97 - 3
Conf. Board: Consumer Confidence M Feb 68 Diff 12 M. -5
U. of Michigan: Consumer Sentiment M May 60 Diff 12 M. -15
Richmond Fed Mfg Survey M Nov 93 - -5
Philadelphia Fed Business Outlook M May 68 - 0
Chicago PMI M Feb 67 - 0
NFIB: Small Business Optimism Index M Oct 75 Diff 12 M. 15
Empire State Manufacturing Survey M Jul 01 - -15

Notes: The second column refers to the sampling frequency of the data, which can be quarterly (Q) or
monthly (M). % QoQ Ann. refers to the quarter on quarter annualized growth rate, % MoM refers to
(yt − yt−1)/yt−1 while Diff 12 M. refers to yt − yt−12. The last column shows the average publication
lag, i.e. the number of days elapsed from the end of the period that the data point refers to until its
publication by the statistical agency. All series were obtained from the Haver Analytics database.
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1960’s, close to the 1973 “productivity slowdown” (Nordhaus, 2004). The acceleration

of the late 1990’s and early 2000’s associated with the productivity boom in the IT

sector (Oliner and Sichel, 2000) is also clearly visible. Thus, until the middle of the

decade of the 2000’s, our estimate conforms well to the generally accepted narrative

about fluctuations in potential growth. It must be noted, however, that according to

our estimates until the most recent part of the sample, the historical average of 3.15%

is always contained within the 90% credible interval. Finally, from its peak of about

3.25% in late 1998 to its level as of June 2014, 2.25%, the median estimate of the trend

has declined by one percentage point, a more substantial decline than the one observed

after the original productivity slowdown of the 1970’s. Moreover, the slowdown ap-

pears to have happened gruadually since the start of the 2000’s, with about half of

the total decline having occurred before the Great Recession and the rest immediately

after.

Our estimate of long-run growth and the CBO’s capture similar but not identical

concepts. The CBO measures the growth rate of potential output, i.e. the level of

output that could be obtained if all resources were used fully, whereas our estimate,

similar to Beverdige and Nelson (1981), measures the component of the growth rate

that is expected to be permanent. Moreover, the CBO estimate is constructed using

the so-called “production function approach”, which is radically different from the

DFM methodology.20 It is nevertheless interesting that despite employing different

statistical methods they produce qualitatively similar results, with the CBO estimate

displaying a more marked cyclical pattern but remaining for most of the sample within

the 90% credible posterior interval of our estimate. As in our estimate, about half

of the slowdown occurred prior to the Great Recession. The CBO’s estimate was

20Essentially, the production function approach calculates the trend components of the supply
inputs to a neoclassical production function (the capital stock, total factor productivity, and the total
amount of hours) using statistical filters and then aggregates them to obtain an estimate of the trend
level of output. See CBO (2001).
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Figure 2: US long-run growth estimate: 1960-2014 (% Annualized Growth Rate)

(a) Posterior long-run growth estimate vs CBO estimate of potential growth
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(b) Filtered estimates of long-run growth vs SPF survey
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Note: Panel (a) plots the posterior median (solid red), together with the 68% and 90% (dashed
blue) posterior credible intervals of long-run GDP growth. The gray circles are the CBO’s estimate
of potential growth. Shaded areas represent NBER recessions. In Panel (b), the solid gray line is
the filtered estimate of the long-run GDP growth rate, α̂1,t|t, using the vintage of National Accounts
available as of mid-2014. The blue diamonds represent the real-time mean forecast from the Livingston
Survey of Professional Forecasters of the average GDP growth rate for the subsequent 10 years.
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significantly below ours immediately after the recession, reaching an unprecedented

low level of about 1.25% in 2010, and remains in the lower bound of our posterior

estimate since then. Section 4.5 expands on the reason for this divergence and argues

that it stems from the larger amount of information incorporated in the DFM.

The posterior estimates, α̂1,t|T , are outputs of a Kalman smoother recursion,

i.e. they are conditioned on the entire sample, so it is possible that our choice of

modeling long-run GDP growth as a random walk is hard-wiring into our results the

conclusion that the decline happened in a gradual way. In experiments with simulated

data, presented in Appendix B, we show that if changes in long-run growth occur in

the form of discrete breaks rather than evolving gradually, additional insights can be

obtained looking at the filtered estimates, α̂1,t|t, which will tend to jump after a break.

Panel (b) shows that the filtered estimate of long-run growth is still consistent with

a relatively gradual slowdown. The model’s estimate declines from about 3.5% in the

early 2000’s to about 2.25% as of mid-2014. The largest downgrades occur in 2003

and in the summer of 2011. As an additional external benchmark we also include the

real-time median forecast of average real GDP growth over the next ten years from

the Livingston Survey of Professional Forecasters’ (SPF). It is noticeable that the SPF

was substantially more pessimistic during the 1990’s, and did not incorporate the sub-

stantial acceleration in trend growth due to the ‘New Economy’ until the end of the

decade. From 2005 to about 2010, the two estimates are remarkably similar, showing

a deceleration to about 2.75% as the productivity gains of the IT boom faded. This

matches the narrative of Fernald (2014). Since then, the SPF forecast has remained

relatively stable whereas our model’s estimate has declined by a further half percentage

point.

Figure 3 presents the posterior estimate of the SV of the common factor.21 The

21To be precise, this is the square root of var(ft) = σ2
ε,t(1− φ2)/[(1 + φ2)((1− φ2)2 − φ21)].
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Figure 3: Stochastic Volatility of Common Factor
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Note: The figure presents the median (red), the 68% (solid blue) and the 90% (dashed blue) posterior
credible intervals of the idiosyncratic component of the common factor. Shaded areas represent NBER
recessions.

Great Moderation is clearly visible, with the average volatility pre-1985 being about

twice the average of the post-1985 sample. Notwithstanding the large increase in

volatility during the Great Recession, our estimate of the common factor volatility since

then remains consistent with the Great Moderation still being in place. This confirms

the early evidence reported by Gadea-Rivas et al. (2014). It is clear from the figure

that volatility seems to spike during recessions, a finding that brings our estimates close

to the recent findings of Jurado et al. (2014) and Bloom (2014) relating to business-

cycle uncertainty.22 It appears that the random walk specification is flexible enough

to capture cyclical changes in volatility as well as permanent phenomena such as the

22It is interesting to note that while in our model the innovations to the level of the common factor
and its volatility are uncorrelated, the fact that increases in volatility are observed during recessions
indicate the presence of negative correlation between the first and second moments, implying negative
skewness in the distribution of the common factor. We believe a more explicit model of this feature
is an important priority for future research.
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Great Moderation. Appendix D provides analogous charts for the estimated volatilities

of the idiosyncratic components of selected data series. Similar to the volatility of the

common factor, many of the idiosyncratic volatilities present sharp increases during

recessions.

The above results provide evidence that a significant decline in long-run US GDP

growth occurred over the last decade, and are consistent with a relatively gradual

decline since the early 2000’s. Both smoothed and filtered estimates show that around

half of the slowdown from the elevated levels of growth at the turn of the century

occurred before the Great Recession, which is consistent with the narrative of Fernald

(2014) on the fading of the IT productivity boom. The other half took place in the

aftermath of the recession. The overall decline is the largest and most significant

movement in long-run growth observed in the postwar period.

4.4 Implications for Tracking GDP in Real Time

As emphasized by Orphanides (2003), macroeconomic time series are heavily revised

over time and in many cases these revisions contain valuable information that was not

available at initial release. Therefore, it is possible that our results are only apparent

using the latest vintage of data, and our model would not have been able to detect the

slowdown in long-run growth as it happened. To address this concern, we reconstruct

our dataset at each point in time, using vintages of data available from the Federal

Reserve Bank of St. Louis ALFRED database. Our aim is to replicate as closely as

possible the situation of a decision-maker which would have applied our model in real

time. We fix the start of our sample in 1960:Q1 and use an expanding out-of-sample

window which starts on 11 January 2000 and ends in 22 September 2014. This is the

longest possible window for which we are able to include the entire panel in Table 1

using fully real-time data. We then proceed by re-estimating the model each day in
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which new data are released.23

Figure 4: Long-Run GDP Growth Estimates in Real Time
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Note: The shaded areas represent the 68th and 90th percentile, together with the median of the
posterior credible interval of the current value of long-run GDP growth, re-estimated daily using the
vintage of data available at each point in time from January 2000 to September 2014. The dashed
line is the contemporaneous estimate of the historical average of GDP growth rate. In both cases the
start of the sample is fixed at Q1:1960.

Figure 4 presents the model’s real-time assessment of the posterior distribution of

long-run growth at each point in time. The estimate of long-run growth from a model

with a constant intercept for GDP growth is plotted for comparison. This estimate is

also updated as new information arrives, but weighs all points of the sample equally.

The evolution of the model’s estimate of long-run growth when estimated in real time

is remarkably similar to the in-sample results discussed above. About half of the

23In a few cases new indicators were developed after January 2000. For example, the Markit
Manufacturing PMI survey is currently one of the most timely and widely followed indicators, but
it started being conducted in 2007. In those cases, we sequentially apply the selection criterion of
Banbura et al. (2012) and append to the panel, in real time, the vintages of the new indicators as
soon as Bloomberg surveys of forecasters are available. In the example of the PMI, surveys appear in
Bloomberg since mid-2012. By implication, the number of indicators in our data panel grows when
new indicators appear. Full details about the construction of the vintage database are available in
Appendix E.
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total decline was detected already by December 2007, and by the summer of 2011 a

large enough decline has occurred such that almost the entire probability mass of the

posterior distribution is below the historical average.

The standard DFM with constant long-run growth and constant volatility has been

successfully applied to produce current quarter nowcasts of GDP (see Banbura et al.,

2010, for a survey). Using our real-time US database, we carefully evaluate whether our

specification with time-varying long-run growth and SV also improves the performance

of the model along this dimension. We find that over the evaluation window 2000-

2014 the model is at least as accurate at point forecasting, and significantly better at

density forecasting than the benchmark DFM. We find that most of the improvement

in density forecasting comes from correctly assessing the center and the right tail of the

distribution, implying that the time-invariant DFM is assigning excessive probability

to a strong recovery. In an evaluation sub-sample spanning the post-recession period,

the relative performance of both point and density forecasts improves substantially,

coinciding with the significant downward revision of the model’s assessment of long-run

growth. In fact, ignoring the variation in long-run GDP growth would have resulted in

being on average around 1 percentage point too optimistic from 2009 to 2014. Appendix

F provides the full details of the forecast evaluation exercise.

To sum up, the addition of the time-varying components not only provides a tool

for decision-makers to update their knowledge about the state of long-run growth in

real time. It also brings about a substantial improvement in short-run forecasting

performance when the trend is shifting, without worsening the forecasts when the

latter is relatively stable. The proposed model therefore provides a robust and timely

methodology to track GDP when long-run growth is uncertain.
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4.5 The Role of Information in Trend-Cycle Decompositions

It is interesting to asses whether using a DFM that includes information from a

broad panel of monthly indicators provides an advantage over traditional trend-cycle

decompositions in detecting changes in the long-run growth rate of GDP. Most studies

usually focus on a few cyclical indicators, generally inflation or variables that are

themselves inputs to the production function (see e.g. Gordon, 2014a or Reifschneider

et al., 2013), whereas DFMs can benefit from incorporating a potentially large number

of indicators and weighing them optimally according to their signal-to-noise ratio.

In this paper we argue that as the number of indicators becomes large, the cyclical

component of GDP growth is estimated arbitrarily well, facilitating the trend-cycle

decomposition through the inclusion of more information.24

Figure 5 compares the uncertainty around the estimates of the common factor and

the long-run GDP growth component from our model and alternative DFMs differing

only in number of cyclical indicators included. In particular, we consider (1) a model

with GDP and unemployment only (labeled “Okun’s Law”), (2) an intermediate model

with GDP and the four additional variables included in Mariano and Murasawa (2003)

and Stock and Watson (1989) (labeled “MM03”), and (3) our baseline specification.

For each model we compute the average variance of the filtered and smoothed estimates,

and decompose it into filtering uncertainty and parameter uncertainty following Hamil-

ton (1986). The uncertainty around the common cyclical factor, displayed in panel (a),

is dramatically reduced as more indicators are added. As visible in panel (b), part of

this reduction spills over to the long-run growth component. The improvement comes

from both types of uncertainty, but mostly from fitering uncertainty. The “MM03”

specification already achieves a substantial reduction in uncertainty, despite using only

24Basistha and Startz (2008) make a similar point, arguing that the inclusion of indicators that are
informative about common cycles can help reduce the uncertainty around Kalman filter estimates of
the long-run rate of unemployment (NAIRU).
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five variables. It should be noted, however, that these indicators are highly informative

about cyclical developments, and yet are usually not included in studies of long-run

growth based on the production function. The model put forward in our paper re-

duces the uncertainty somewhat further and has the additional advantage of including

variables, such as surveys, that are available in a more timely manner, leading to a

reduction of uncertainty in real time.

Figure 5: Uncertainty in Different Trend-Cycle Decompositions
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(b) Long-Run Growth Component

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0 5 10 15 20 25 30

V
ar

ia
n
ce

Number of Variables

"Okun's Law"

MM03
Baseline

Note: This figure compares the uncertainty surrounding the composition into trend and cycle in three
alternative models, where the horizontal axis depicts the number of variables used. Panel (a) displays
the uncertainty around the cyclical component, whereas the uncertainty around the long-run growth
component is visible in panel (b). In both panels, the black lines correspond to the smoothed estimate
and the red lines to the filtered estimates. The solid line captures the total uncertainty coming from
both filtering and parameter uncertainty. The dashed corresponds to uncertainty excluding parameter
uncertainty.

The point made here helps in explaining the recent divergence between our estimate

of long-run GDP growth and the CBO’s potential growth estimate. The CBO’s method
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embeds an Okun’s Law relationship, by which growth is above potential when the

unemployment rate is declining. The combination of weak GDP growth and a strong

decline in unemployment of the last few years has therefore led to drastic downward

revisions of their potential GDP growth. However, many observers have noted that

the strong decline in labor force participation invalidates the use of the unemployment

rate as a sufficient indicator of cyclical conditions (see e.g. Erceg and Levin, 2013).

By extracting the cyclical factor from a broad panel of activity variables, our model is

more robust to an abnormal development in one particular variable.

4.6 Robustness to Priors and Model Settings

Recall that in our main results we use non-informative priors for loadings and serial

correlation coefficients, and a conservative prior for the time variation in the long-run

growth of GDP and SV. The non-informative priors were motivated by our desire to

make our estimates more comparable to the existing literature. As a robustness check

we also consider a “Minnesota”-style prior on the autoregressive coefficients of the fac-

tor,25 as well as shrinking the coefficients of the serial correlation towards zero. The

motivation for these priors is to express a preference for a more parsimonious model

where the factors capture the bulk of the persistence of the series and the idiosyncratic

components are close to iid, that is closer to true measurement error. These alterna-

tive priors do not meaningfully affect the posterior estimates of our main objects of

interest.26 As for the prior on the amount variation of long-run growth, our choice of a

conservative prior was motivated by our desire to minimize overfitting, especially given

that the GDP series, being observed only at the quarterly frequency, has one third of

25To be precise, we center the prior on the first lag around 0.9 and the subsequent lags at zero.
26There is some evidence that the use of these priors might at times improve the convergence of the

algorithm. Specifically, when we apply the model to the other G7 economies (see Section 5), we find
that for some countries where few monthly indicators are available, shrinking the serial correlations
of the idiosyncratic components towards zero helps obtaining a common factor that is persistent.
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the observations of the monthly variables. Other researchers might however believe

that the permanent component of GDP growth is more variable, so we re-estimated

the model using a larger prior for the variance of its time variation (i.e. ςα,1 = 0.01).

As a consequence, the long-run component displays a more pronounced cyclical varia-

tion but it is estimated less accurately. Interestingly, the increase in the variance and

cyclicality of the long-run growth component brings it closer to the CBO estimate.

5 Decomposing Movements in Long-Run Growth

So far we have argued that in order to track movements in long-run GDP growth,

and to ensure that GDP forecasts are robust to changes in the latter, it is sufficient to

include a time-varying intercept in the GDP equation only. In this section, we show

that with minimal modifications, our model can be used to decompose the long-run

growth rate of output into long-run movements in labor productivity and labor input.

By doing this, we exploit the ability of the model to filter away cyclical variation and

idiosyncratic noise and obtain clean estimates of the underlying long-run trends. We

see this exercise as a tentative step towards giving an economic interpretation to the

movements in long-run GDP growth detected by our model.

GDP growth is by identity the sum of growth in output per hour and growth in

total hours worked. By adding the hours series to the data panel, it is possible to

split the long-run growth trend in our model into two orthogonal components such

that this identity is satisfied in the long run.27 In the measurement equation of the

DFM, the first of these components loads output but not hours, and the second loads

27Throughout this section, we construct quarterly series for aggregate hours worked in the total
economy following the methodology of Ohanian and Raffo (2012). In particular, we benchmark the
series of average hours provided by the BLS to the annual estimates compiled by the Conference
Board’s Total Economy Database (TED), which are regarded as more reliable and comparable across
countries.
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both series. We interpret the first component as the long-run growth rate of labor

productivity, while the second one captures low-frequency movements in labor input

independent of productivity. The state-space representation presented in Section 3.3

allows us to implement this decomposition in the form of restrictions on the loading

matrix.28 Formally, let y1,t and y2,t denote the growth rate of real GDP and total

hours worked, respectively. Equation (1) and the first element of equation (2) are then

re-written as y1,t
y2,t

 =

1 1

0 1


zt
ht

+

 1

λ2

 ft +

u1,t
u2,t

 , (11)

where zt and ht jointly follow random walks with diagonal covariance matrix. The

measurement equation for the other monthly indicators yi,t for i = 3, . . . , n remains

unchanged. Given equation (11), the two components add up to the time-varying

intercept in the baseline specification, i.e. α1,t = zt + ht. Moreover, growth in output

per hour, y1,t − y2,t, is equal to zt in the long run.29 Since zt and ht are independent

and add up to α1,t, we set the prior on the scale of their variances to half of the one

set in Section 4.1 on α1,t.

The above restrictions identify zt and ht, but in order to reduce uncertainty around

their estimates, it is desirable to add additional information on these components that

might be contained in consumption, an argument stemming from a large strand of the

literature. Motivated by the permanent income hypothesis, Harvey and Stock (1988),

Cochrane (1994) and Cogley (2005) argue that incorporating information about con-

sumption is informative about the permanent component in GDP.30 Since consumption

28The restrictions are implemented by drawing from the restricted conditional posterior. See Bai
and Wang (2012) for details.

29In addition, note that the cyclical movement in labor productivity is given by (1− λ2)ft.
30Importantly, consumption of durable goods should be excluded given that the ratio of their price

index to the GDP deflator exhibits a downward trend, and therefore the chained quantity index grows
faster than overall GDP. Following Whelan (2003), for this section we construct a Fisher index of
non-durables and services and use its growth rate as an observable variable in the panel.
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and output should grow at the same rate in the long-run, we impose that zt and ht

also load consumption growth with coefficient equal to unity.

Figure 6 presents the results of the decomposition exercise for the US. Panel (a)

plots the median posterior estimate of long-run GDP growth and its labor productiv-

ity and total hours components. The posterior bands for long-run GDP growth are

included.31 The time series evolution conforms very closely to the narrative of Fer-

nald (2014), with a pronounced boom in labor productivity in the mid-1990’s and a

subsequent fall in the 2000’s clearly visible. The decline in the 2000’s is relatively

sudden while the 1970’s slowdown appears as a more gradual phenomenon starting

in the late 1960’s. Furthermore, the results reveal that during the 1970’s and 1980’s

the impact of the productivity slowdown on output growth was partly masked by a

secular increase in hours, probably reflecting increases in the working-age population

as well as labor force participation (see e.g. Goldin, 2006). Focusing on the period

since 2000, labor productivity accounts for almost the entire decline. This contrasts

with the popular narrative by which slow labor force growth has been a drag on GDP

growth. When taking away the cyclical component of hours and focusing solely on its

long-run component, the contribution of hours has, if anything, accelerated since the

Great Recession.32 Panel (b) plots 2,000 draws from the joint posterior distribution

of the variances of the innovations to the labor productivity and hours components.

About 70% of the draws lie above the 45◦ line, while under the equal-variance prior

31Note that including consumption reduces the uncertainty around the estimate of long-run GDP
growth relative to Figure 2 and makes its movements somewhat more pronounced. In particular, the
entire slowdown in growth now appears to have occurred before the Great Recession. A comparison
is available in Appendix D.

32The filtered estimates of the two components, available in Appendix D, reveal that around the
turn of the century the slowdown in GDP growth is explained by a gradual decline in the labor input
component. Starting around 2005 a more abrupt revision to labor productivity drives the decline in
overall long-run GDP. A comparison with the SPF shows how the difference in the overall growth rate
displayed in Figure 2 is explained by a larger downward revision of long-run labor productivity. The
end of the sample is associated with a rise in the labor input component accompanied by stagnating
labor productivity.
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Figure 6: Decomposition of Long-run US Output Growth

(a) Posterior median estimates of decomposition

0

1

2

3

4

5

1960 1970 1980 1990 2000 2010

Labor Productivity Labor Input GDP

(b) Joint posterior distribution of component’s innovation variances

0

0.0005

0.001

0.0015

0.002

0 0.0005 0.001 0.0015 0.002

V
ar

ia
n
ce

 o
f 
P

ro
d
u
ct

iv
it

y 
T

re
n
d
 I

n
n
ov

at
io

n

Variance of Labor Input Trend Innovation

Note: Panel (a) plots the posterior median (red), together with the 68% and 90% (dashed blue)
posterior credible intervals of long-run GDP growth and the posterior median of both long-run labor
productivity growth and long-run total hours growth (solid blue and dashed grey lines). Panel (b) plots
2,000 draws of the joint posterior distribution of the variances of innovations to the labor productivity
and hours components. The dashed red line is the 45◦-line.

31



the draws would be equally distributed above and below it. This confirms the visual

impression from Panel (a) that changes in labor productivity, rather than in labor

input, are the key driver of low frequency movements in real GDP growth.

It is interesting to compare the results of our decomposition exercise to similar ap-

proaches in the recent literature, in particular Gordon (2010, 2014a) and Reifschneider

et al. (2013). Like us, they specify a state space model with a common cyclical com-

ponent and use the ‘output identity’ to decompose the long-run growth rate of GDP

into underlying drivers. The key difference is that we use a large amount of informa-

tion, allowing us to retrieve a timely and precise estimate of the cyclical component

and, as a consequence, to reduce the uncertainty that is inherent to any trend-cycle

decomposition of the data, as discussed in Section 4.5. Another difference resides in

the Bayesian estimation of the model, which enables us to impose a conservative prior

on the variance of the long-run growth component that helps avoiding over-fitting the

data. Furthermore, the inclusion of SV in the cyclical component helps to prevent un-

usually large cyclical movements from contaminating the long-run estimate. In terms

of results, we obtain a substantially less pessimistic estimate of the long-run growth of

GDP than these studies in the latest part of the sample. For instance, Gordon (2014a)

reports a long-run GDP growth estimate below 1% for the end of the sample, whereas

our median estimate stands at around 2%. Since Gordon’s model can be nested into

ours, we attribute this difference to our use of a large-dimensional system.33

To gain an international perspective on our results, we estimate the DFM for the

other G7 economies and perform the decomposition exercise for each of them.34 The

33In Appendix D we provide the results for a bivariate model of GDP and unemployment and show
that the current long-run growth estimate is 1.3%, close to Gordon (2014a).

34Details on the specific data series used for each country are available in Appendix E. For hours,
we again follow the methodology of Ohanian and Raffo (2012). In the particular case of the UK,
the quarterly series for hours displays a drastic change in its stochastic properties in the early 1990’s
owing to a methodological change in the construction by the ONS, as confirmed by the ONS LFS
manual. We address this issue by using directly the annual series from the TED, which requires an
appropriate extension of equation (8) to annual variables (see Banbura et al. 2012). To avoid weak
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Figure 7: Decomposition for Other Advanced Economies
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Note: Panel (a) displays the posterior median of long-run labor productivity across advanced
economies. Panel (b) plots the corresponding estimates of long-run total hours worked. In both
panels, ’Euro Area’ represents a weighted average of Germany, Italy and France.
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median posteriors of the labor productivity and labor input trends are displayed in

Figure 7. Labor productivity, displayed in Panel (a), plays again the key role in deter-

mining movements in long-run. In the Western European economies and Japan, the

elevated growth rates of labor productivity prior to the 1970’s reflect the rebuilding of

the capital stock from the destruction from World War II, and were bound to end as

these economies converged towards US levels of output per capita. The labor produc-

tivity profile of Canada broadly follows that of the US, with a slowdown in the 1970’s

and a temporary mild boom during the late 1990’s. Interestingly, this acceleration in

the 1990’s did not occur in Western Europe and Japan.35 The UK stands out for the

unprecedented decline in labor productivity around the time of the Great Recession.

This “productivity puzzle” has been debated extensively in the UK (see e.g. Pessoa and

Van Reenen, 2014). It is interesting to note that the two countries which experienced

a more severe financial crisis, the US and the UK, appear to be the ones with greatest

declines in productivity since the early 2000’s, similar to the evidence documented in

Reinhart and Rogoff (2009).

Panel (b) displays the movements in long-run hours worked identified by equation

(11). The contribution of this component to overall long-run output growth varies

considerably across countries. However, within each country it is more stable over time

than the productivity component, which is in line with our findings for the US. Indeed,

the extracted long-run trend in total hours includes various potentially offsetting forces

that can lead to changes in long-run output growth. Whatever these might be, the

results of our decomposition exercise indicate that after using the DFM to remove

business-cycle variation in hours and output, the decline in long-run GDP growth that

has been observed in the advanced economies since the early 2000’s is according to

identification of ht for the UK, we truncate our prior on its variance to discard values which are larger
than twice the maximum posterior draw of the case of the other countries.

35See also Hayashi and Prescott (2002) and Gordon (2004).
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our model entirely accounted for by a decline in the productivity trend. Finally, it

is interesting to note for the countries in the sample long-run productivity growth

appears to converge in the cross section, while there is no evidence of convergence in

the long-run growth of hours.36

6 Concluding Remarks

The sluggish recovery from the Great Recession has raised the question whether

the long-run growth rate of US GDP is now lower than it has been on average over

the postwar period. We have presented a dynamic factor model that allows for both

changes in long-run GDP growth and stochastic volatility. Estimating the model with

Bayesian methods, we provide evidence that long-run growth of US GDP displays a

gradual decline after the turn of the century, moving from its peak of 3.5% to about

2.25% in 2014. Using real-time vintages of data we demonstrate the model’s ability

to track GDP in a timely and reliable manner. By the summer of 2011 the model

would have concluded that a significant decline in long-run growth was behind the slow

recovery, therefore substantially improving the real-time tracking of GDP by explicitly

taking into account the uncertainty surrounding long-run growth.

Finally, we discuss the drivers of movements in long-run GDP growth through the

lens of our model by decomposing it into the long-run growth rates of labor produc-

tivity and labor input. Using data for both the US and other advanced economies our

model points to a slowdown in labor productivity as the main driver of weak global

growth in recent years, extending the narrative of Fernald (2014) to other economies.

Our econometric approach remains agnostic about the deep structure of the economy.

36Similar evidence for emerging economies has been recently presented by Pritchett and Summers
(2014). Their evidence refers to convergence of overall GDP growth rates, whereas ours indicates that
convergence in productivity growth appears to be the dominant source of convergence.
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Therefore a fully specified structural model would be required to go beyond the sim-

ple decomposition presented here and to attach a more precise interpretation to the

low-frequency movements in macroeconomic aggregates. However, we have shown that

these long-run movements are an important feature of the data that can be successfully

modeled within the DFM framework without compromising its appealing parsimonious

structure.
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Appendix to “Following the Trend: Tracking GDP when

Long-Run Growth is Uncertain”

A Full Results of Structural Break Tests

A.1 Bai and Perron Test

Table A.1 reports the result for the Bai and Perron (1998) test applied to US real
GDP growth. We apply the SupFT (k) test for the null hypothesis of no break against
the alternatives of k = 1, 2, or 3 breaks. Secondly, the test SupFT (k + 1|k) tests the
null of k breaks against the alternative of k + 1 breaks. Finally, the Udmax statistic
tests the null of absence of break against the alternative of an unknown number of
breaks. The null is rejected in each of the three tests, at the 5% level for the case of
one break and at the 10% level for two and three breaks. However, we cannot reject the
null of only one break against two breaks, or the null of only two against three breaks.
The final test confirms the conclusion that there is evidence in favor of at least one
break. The conclusions are almost identical when we use our baseline sample starting
in 1960:Q1, or a longer one starting in 1947:Q1. The most likely break is identified to
have happened at the beginning of 2000.

Table A.1:
Test Results of Bai-Perron Test

1960-2014 1947-2014
SupFT (k)

k = 1 8.626** 8.582**
[2000:Q2] [2000:Q1]

k = 2 5.925* 4.294
[1973:Q2; 2000:Q2] [1968:Q1; 2000:Q1]

k = 3 4.513* 4.407*
[1973:Q1; 1984:Q1; 2000:Q2] [1968:Q4; 1982:Q3; 2000:Q1]

SupFT (k|k − 1)
k = 2 2.565 1.109
k = 3 0.430 2.398

Udmax 8.626** 8.582**

Note: Results are obtained using the Bai and Perron (1998) methodology. Dates in square brackets
are the most likely break date(s) for each of the specifications.

1



A.2 Nyblom Test

Table A.2 reports the result for the Nyblom (1989) test applied to US real GDP
growth, as described in Hansen (1992). The specification is yt = µ+ ρ1yt−1 + ρ2yt−1 +
σεt, where yt is real GDP growth. For each parameter of the specification, the null
hypothesis is that the respective parameter is constant.

Table A.2:
Test Results of Nyblom Test

Lc
AR(1) AR(2)

µ 0.439* 0.371*
ρ1 0.071 0.110
ρ2 0.144
σ2 1.102*** 1.019***

Joint Lc 1.585*** 1.420***

Notes: Results are obtained using Nyblom’s L test as described in Hansen (1992).
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B Simulation Results

Figure B.1: Simulation Results I

Data-generating process (DGP) with one discrete break in the trend

(a) True vs. Estimated Trend (Filtered)
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Note: The DGP features a discrete break in the trend of GDP growth occurring in the middle
of the sample, as well as stochastic volatility. The sample size is n = 26 and T = 600, which
mimics our US data set. The estimation procedure is the fully specified model as defined
by equations (1)-(7) in the text. We carry out a Monte Carlo simulation with 100 draws
from the DGP. Panel (a) presents the trend component as estimated by the Kalman filter,
plotted against the actual trend. The corresponding figure for the smoothed estimate is
given in panel (b). In both panels, the posterior median (black) as well 68th (solid) and 90th
(dashed) percentile of the posterior density are shown in blue/purple. Panel (c) displays the
factor generated by the the DGP (red) and its smoothed estimate (blue) for one draw. Panel
(d) provides evidence on the accuracy of the estimation of the SV of the idiosyncratic terms,
by plotting the volatilities from the DGP against the estimates for all 26 variables. Both are
normalized by subtracting the average volatility.

3



Figure B.2: Simulation Results II

Data-generating process (DGP) with two discrete breaks in the trend

(a) True vs. Estimated Trend (Filtered)
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Note: The simulation setup is equivalent to the one in Figure B.1 but features two discrete
breaks in the trend at 1/3 and 2/3 of the sample. Again, we show the filtered as well as the
smoothed trend median estimates and the corresponding 68th and 90th percentiles of the
posterior density. Panels (c) and (d) are omitted as they are very similar to Figure B.1.
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Figure B.3: Simulation Results III

Data-generating process (DGP) without trend and without SV

(a) True vs. Estimated Trend (Filtered)
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(b) True vs. Estimated Trend (Smoothed)
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(c) True vs. Estimated Factor
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(d) True vs. Estimated Volatility of Factor
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Note: The DGP is the baseline model without trend in GDP growth and without stochastic
volatility. The estimation procedure is the fully specified model as explained in the description
of Figure B.1. Again, we plot the filtered and smoothed median estimates of the trend with
68th and 90th percentiles of the posterior density in panels (a) and (b). Panel (c) presents
a comparison of the estimated factor and its DGP counterpart for one Monte Carlo draw.
Panel (d) in similar to (b), but for the volatility of the common factor.
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Figure B.4: Simulation Results IV

Data-generating process (DGP) without trend and discrete break in factor volatility

(a) True vs. Estimated Trend (Smoothed)
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Note: The DGP does not feature any changes in the trend of GDP growth, but one discrete
break in the volatility of the common factor. As in Figures B.1-B.3, the estimation procedure
is based on the fully specified mode. Panel (a) displays the smoothed posterior median esti-
mate of the trend component of GDP growth, with 68th and 90th percentiles of the posterior
density shown as solid and dashed blue lines, respectively. Panel (b) displays the posterior
median estimate of the volatility of the common factor (black), with the corresponding bands.
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C Details on Estimation Procedure

C.1 Construction of the State Space System

Recall that in our main specification we choose the order of the polynomials in
equations (3) and (4) to be p = 2 and q = 2, respectively. Let the vector ỹt be defined
as

ỹt =


yq1,t

y2,t − ρ2,1y2,t−1 − ρ2,2y2t−2 − ᾱ2
...

yn,t − ρn,1yn,t−1 − ρn,2yn,t−2 − ᾱn

 ,
where ᾱi = αi(1−ρi,1−ρi,2), so that the system is written out in terms of the quasi-

differences of the monthly indicators. Given this re-defined vector of observables, we
cast our model into the following state space form:

yt = HXt + η̃t, η̃t
iid∼ N(0, R̃t)

Xt = FXt−1 + et, et
iid∼ N(0, Qt)

where the state vector is defined as Xt =
[
α1t, . . . , α1t−4, ft, . . . , ft−4, u1t, . . . , u1t−4

]′
.

In the above state space system, after setting λ1 = 1 for identification, the matrices
of parameters H and F , are then constructed as follows:

H =

[
Hq Hq Hq

0(n−1)×5 Hm 0(n−1)×5

]

Hq =
[
1
3

2
3

1 2
3

1
3

]
Hm =


λ2 − λ2ρ2,1 − λ2ρ2,2 0 0
λ3 − λ3ρ3,1 − λ3ρ3,2 0 0

...
λn − λnρn,1 − λnρn,2 0 0



F =

 F1 05×5 05×5
05×5 F2 05×5
05×5 05×5 F3



F1 =

[
1 01×4
I4 04×1

]
F2 =

[
φ1 φ2 01×3
I4 04×1

]
F3 =

[
ρ1,1 ρ1,2 01×3
I4 04×1

]

7



Furthermore, the error terms are defined as

η̃t =
[
0 η2,t . . . ηn,t

]′
et =

[
vα,t 04×1 εt 04×1 η1,t 04×1

]′
with covariance matrices

R̃t =

[
0 01×(n−1)

0(n−1)×1 Rt

]
,

where Rt = diag(ση2,t , ση3,t , . . . , σηn,t),
and

Qt = diag(ςα,1,01×4, σε,t,01×4, ση1,t ,01×4).
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C.2 Details of the Gibbs Sampler

Let θ ≡ {λ,Φ, ρ, ςα1 , ςε, ςη} be a vector that collects the underlying parameters. The
model is estimated using a Markov Chain Monte Carlo (MCMC) Gibbs sampling algo-
rithm in which conditional draws of the latent variables, {α1t, ft}Tt=1, the parameters, θ,
and the stochastic volatilities, {σε,t, σηi,t}Tt=1 are obtained sequentially. The algorithm
has a block structure composed of the following steps.

C.2.0 Initialization

The model parameters are initialized at arbitrary starting values θ0, and so are the
sequences for the stochastic volatilities, {σ0

ε,t, σ
0
ηi,t
}Tt=1. Set j = 1.

C.2.1 Draw latent variables conditional on model parameters and SVs

Obtain a draw {αj1t, f
j
t }Tt=1 from p({α1t, ft}Tt=1|θj−1, {σ

j−1
ε,t , σ

j−1
ηi,t
}Tt=1, y).

This step of the algorithm uses the state space representation described above
(Appendix C.1), and produces a draw from the entire state vector Xt by means of a
forward-filtering backward-smoothing algorithm (see Carter and Kohn 1994 or Kim
and Nelson 1999b). In particular, we adapt the algorithm proposed by Bai and Wang
(2012), which is robust to numerical inaccuracies, and extend it to the case with mixed
frequencies and missing data following Mariano and Murasawa (2003), as explained
in section 3.2. Like Bai and Wang (2012), we initialise the Kalman Filter step from
a normal distribution whose moments are independent of the model parameters, in
particular X0 ∼ N(0, 104).

C.2.2 Draw the variance of the time-varying GDP growth component

Obtain a draw ςjα1
from p(ςα1|{α

j
1t}Tt=1).

Taking the sample {αj1,t}Tt=1 drawn in the previous step as given, and posing an
inverse-gamma prior p(ςα1) ∼ IG(Sα1 , vα1) the conditional posterior of ςα1 is also drawn
inverse-gamma distribution. As discussed in Section 4.1, we choose the scale Sα1 = 10−3

and degrees of freedom vα1 = 1 for our baseline specification.

C.2.3 Draw the autoregressive parameters of the factor VAR

Obtain a draw Φj from p(Φ|{f j−1t , σj−1ε,t }Tt=1).

Taking the sequences of the common factor {f j−1t }Tt=1 and its stochastic volatility
{σj−1ε,t }Tt=1 from previous steps as given, and posing a non-informative prior, the corre-
sponding conditional posterior is drawn from the Normal distribution (see, e.g. Kim
and Nelson 1999b). In the more general case of more than one factor, this step would

9



be equivalent to drawing from the coefficients of a Bayesian VAR. Like Kim and Nel-
son (1999b), or Cogley and Sargent (2005), we reject draws which imply autoregressive
coefficients in the explosive region.

C.2.4 Draw the factor loadings

Obtain a draw of λj from p(λ|ρj−1, {f j−1t , σj−1ηi,t
}Tt=1, y).

Conditional on the draw of the common factor {f j−1t }Tt=1, the measurement equa-
tions reduce to n independent linear regressions with heteroskedastic and serially cor-
related residuals. By conditioning on ρj−1 and σj−1ηi,t

, the loadings can be estimated
using GLS and non-informative priors. When necessary, we apply restrictions on the
loadings using the formulas provided by Bai and Wang (2012).

C.2.5 Draw the serial correlation coefficients of the idiosyncratic compo-
nents

Obtain a draw of ρj from p(ρ|λj−1, {f j−1t , σj−1ηi,t
}Tt=1, y).

Taking the sequence of the common factor {f j−1t }Tt=1 and the loadings drawn in
previous steps as given, the idiosyncratic components can be obtained as ui,t = yi,t −
λj−1f j−1t . Given a sequence for the stochastic volatility of the ith component, {σj−1ηi,t

}Tt=1,
the residual is standardized to obtain an autoregression with homoskedastic residuals
whose conditional posterior can be drawn from the Normal distribution as in step 2.3.

C.2.6 Draw the stochastic volatilities

Obtain a draw of {σjε,t}Tt=1 and {σjηi,t}
T
t=1 from p({σε,t}Tt=1|Φj−1, {f j−1t }Tt=1), and

from p({σηi,t}Tt=1|λj−1, ρj−1, {f
j−1
t }Tt=1, y) respectively.

Finally, we draw the stochastic volatilities of the innovations to the factor and
the idiosyncratic components independently, using the algorithm proposed by Kim
et al. (1998), which uses a mixture of normal random variables to approximate
the elements of the log-variance. This is a more efficient alternative to the exact
Metropolis-Hastings algorithm previously proposed by Jacquier et al. (2002). For the
general case in which there is more than one factor, the volatilities of the factor VAR
can be drawn jointly, see Primiceri (2005).

Increase j by 1, go to Step 2.1 and iterate until convergence is achieved.
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D Additional Figures

Figure D.1: Stochastic Volatility of Selected Idiosyncratic Components
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Note: Each panel presents the median (red), the 68% (dashed blue) and the 90% (dotted blue)
posterior credible intervals of the idiosyncratic component of the idiosyncratic component of selected
variables. Shaded areas represent NBER recessions. Similar charts for other variables are available
upon request.
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Figure D.2: Long-run GDP Growth Estimate using Unemployment Rate Only
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Note: The figure displays the posterior median estimate of long-run GDP growth for the model which
uses unemployment as the single cyclical indicator, as discussed in Section 4.5. The 68% and 90%
posterior credible intervals are shown. The combination of weak GDP growth and a strong decline in
unemployment observed in the latter part of the sample drives down the estimate of long-run growth
in this model, bringing it closer to the CBO’s estimate.
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Figure D.3: Long-run GDP Growth Estimates With And Without Including Consumption
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Note: The figure displays the posterior median estimate of long-run GDP growth for the model with
(solid blue) and without (dotted grey) including the series for consumption, as discussed in Section 5.
The 68% and 90% posterior credible intervals are shown.

Figure D.4: Filtered Estimates of Long-Run Labor Productivity and Hours
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Note: The figure displays the filtered estimates of the long-run labor productivity and hours component
from the decompostion in Section 5, i.e. ẑt|t and ĥt|t. For comparison, the corresponding forecasts
from the SPF are plotted. The SPF forecast for total hours is obtained as the difference between the
forecasts for real GDP and labour productivity.
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E Details on the Construction of the Data Base

E.1 US (Vintage) Data Base

For our US real-time forecasting evaluation, we consider data vintages since 11
January 2000 capturing the real activity variables listed in the text. For each vintage,
the start of the sample is set to January 1960, appending missing observations to any
series which starts after that date. All times series are obtained from one of these
sources: (1) Archival Federal Reserve Economic Data (ALFRED), (2) Bloomberg, (3)
Haver Analytics. Table E.1 provides details on each series, including the variable code
corresponding to the different sources.

For several series, in particular Retail Sales, New Orders, Imports and Exports,
only vintages in nominal terms are available, but series for appropriate deflators are
available from Haver, and these are not subject to revisions. We therefore deflate
them using, respectively, CPI, PPI for Capital Equipment, and Imports and Exports
price indices. Additionally, in several occassions the series for New Orders, Personal
Consumption, Vehicle Sales and Retail Sales are subject to methodological changes
and part of their history gets discontinued. In this case, given our interest in using
long samples for all series, we use older vintages to splice the growth rates back to the
earliest possible date.

For soft variables real-time data is not as readily available. The literature on real-
time forecasting has generally assumed that these series are unrevised, and therefore
used the latest available vintage. However while the underlying survey responses are
indeed not revised, the seasonal adjustment procedures applied to them do lead to
important differences between the series as was available at the time and the latest
vintage. For this reason we use seasonally un-adjusted data and re-apply the Census-
X12 procedure in real time to obtain a real-time seasonally adjusted version of the
surveys. We follow the same procedure for the initial unemployment claims series. We
then use Bloomberg to obtain the exact date in which each monthly datapoint was
first published.
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Table E.1:
Detailed Description of Data Series

Frequ. Start
Date

Vintage
Start

Trans-
formation

Publ.
Lag

Data
Code

Hard Indicators
Real Gross Domestic
Product

Q Q1:1960 Dec 91 %QoQ
Ann

26 GDPC1(F)

Real Industrial
Production

M Jan 60 Jan 27 % MoM 15 INDPRO(F)

Real Manufacturers’
New Orders Nondefense
Capital Goods
Excluding Aircraft

M Mar 68 Mar 97 % MoM 25 NEWORDER(F)1

PPICPE(F)

Real Light Weight
Vehicle Sales

M Feb 67 Mar 97 % MoM 1 ALTSALES(F)2

TLVAR(H)

Real Personal
Consumption
Expenditures

M Jan 60 Nov 79 % MoM 27 PCEC96(F)

Real Personal Income
less Transfer Payments

M Jan 60 Dec 79 % MoM 27 DSPIC96(F)

Real Retail Sales Food
Services

M Jan 60 Jun 01 % MoM 15 RETAIL(F)

CPIAUCSL(F)

RRSFS(F)3

Real Exports of Goods M Feb 68 Jan 97 % MoM 35 BOPGEXP(F)4

C111CPX(H)

TMXA(H)

Real Imports of Goods M Feb 69 Jan 97 % MoM 35 BOPGIMP(F)4

C111CP(H)

TMMCA(H)

Building Permits M Feb 60 Aug 99 % MoM 19 PERMIT(F)

Housing Starts M Jan 60 Jul 70 % MoM 26 HOUST(F)

New Home Sales M Feb 63 Jul 99 % MoM 26 HSN1F(F)

Total Nonfarm Payroll
Employment
(Establishment Survey)

M Jan 60 May 55 % MoM 5 PAYEMS(F)

Civilian Employment
(Household Survey)

M Jan 60 Feb 61 % MoM 5 CE16OV(F)

Unemployed M Jan 60 Feb 61 % MoM 5 UNEMPLOY(F)

Initial Claims for
Unempl. Insurance

M Jan 60 Jan 00* % MoM 4 LICM(H)

(Continues on next page)
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Detailed Description of Data Series (Continued)

Soft Indicators
Markit Manufacturing
PMI

M May 07 Jan 00* - -7 S111VPMM(H)5

H111VPMM(H)

ISM Manufacturing PMI M Jan 60 Jan 00* - 1 NMFBAI(H)

NMFNI(H)

NMFEI(H)

NMFVDI(H)6

ISM Non-manufacturing
PMI

M Jul 97 Jan 00* - 3 NAPMCN(H)

Conference Board:
Consumer Confidence

M Feb 68 Jan 00* Diff 12 M. -5 CCIN(H)

University of Michigan:
Consumer Sentiment

M May 60 Jan 00* Diff 12 M. -15 CSENT(H)5

CONSSENT(F)

Index(B)

Richmond Fed
Manufacturing Survey

M Nov 93 Jan 00* - -5 RIMSXN(H)

RIMNXN(H)

RIMLXN(H)6

Philadelphia Fed
Business Outlook

M May 68 Jan 00* - 0 BOCNOIN(H)

BOCNONN(H)

BOCSHNN(H)

BOCDTIN(H)

BOCNENN(H)6

Chicago PMI M Feb 67 Jan 00* - 0 PMCXPD(H)

PMCXNO(H)

PMCXI(H)

PMCXVD(H)6

NFIB: Small Business
Optimism Index

M Oct 75 Jan 00* Diff 12 M. 15 NFIBBN (H)

Empire State
Manufacturing Survey

M Jul 01 Jan 00* - -15 EMNHN(H)

EMSHN(H)

EMDHN(H)

EMDSN(H)

EMESN(H)6

Notes: The second column refers to the sampling frequency of the data, which can be quarterly (Q) or monthly
(M). % QoQ Ann. refers to the quarter on quarter annualized growth rate, % MoM refers to (yt − yt−1)/yt−1
while Diff 12 M. refers to yt − yt−12. In the last column, (B) = Bloomberg; (F) = FRED; (H) = Haver;
1) deflated using PPI for capital equipment; 2) for historical data not available in ALFRED we used data
coming from HAVER; 3) using deflated nominal series up to May 2001 and real series afterwards; 4) nominal
series from ALFRED and price indices from HAVER. For historical data not available in ALFRED we used
data coming from HAVER; 5) preliminary series considered; 6) NSA subcomponents needed to compute the
SA headline index. * Denotes seasonally un-adjusted series which have been seasonally adjusted in real time.

17



E.2 Data Base for Other G7 Economies

Table E.2:
Canada

Freq. Start Date Transformation

Real Gross Domestic Product Q Jun-1960 % QoQ Ann.
Industrial Production: Manuf., Mining, Util. M Jan-1960 % MoM
Manufacturing New Orders M Feb-1960 % MoM
Manufacturing Turnover M Feb-1960 % MoM
New Passenger Car Sales M Jan-1960 % MoM
Real Retail Sales M Feb-1970 % MoM
Construction: Dwellings Started M Feb-1960 % MoM
Residential Building Permits Auth. M Jan-1960 % MoM
Real Exports M Jan-1960 % MoM
Real Imports M Jan-1960 % MoM
Unemployment Ins.: Initial and Renewal Claims M Jan-1960 % MoM
Employment: Industrial Aggr. excl. Unclassified M Feb-1991 % MoM
Employment: Both Sexes, 15 Years and Over M Feb-1960 % MoM
Unemployment: Both Sexes, 15 Years and Over M Feb-1960 % MoM
Consumer Confidence Indicator M Jan-1981 Diff 12 M.
Ivey Purchasing Managers Index M Jan-2001 Level
ISM Manufacturing PMI M Jan-1960 Level
University of Michigan: Consumer Sentiment M May-1960 Diff 12 M.

Notes: The second column refers to the sampling frequency of the data, which can be quarterly (Q)
or monthly (M). % QoQ Ann. refers to the quarter on quarter annualized growth rate, % MoM refers
to (yt − yt−1)/yt−1 while Diff 12 M. refers to yt − yt−12. All series were obtained from the Haver
Analytics database.
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Table E.3:
Germany

Freq. Start Date Transformation

Real Gross Domestic Product Q Jun-1960 % QoQ Ann.
Mfg Survey: Production: Future Tendency M Jan-1960 Level
Ifo Demand vs. Prev. Month: Manufact. M Jan-1961 Level
Ifo Business Expectations: All Sectors M Jan-1991 Level
Markit Manufacturing PMI M Apr-1996 Level
Markit Services PMI M Jun-1997 Level
Industrial Production M Jan-1960 % MoM
Manufacturing Turnover M Feb-1960 % MoM
Manufacturing Orders M Jan-1960 % MoM
New Truck Registrations M Feb-1963 % MoM
Total Unemployed M Feb-1962 % MoM
Total Domestic Employment M Feb-1981 % MoM
Job Vacancies M Feb-1960 % MoM
Retail Sales Volume excluding Motor Vehicles M Jan-1960 % MoM
Wholesale Vol. excl. Motor Veh. and Motorcycles M Feb-1994 % MoM
Real Exports of Goods M Feb-1970 % MoM
Real Imports of Goods M Feb-1970 % MoM

Notes: The second column refers to the sampling frequency of the data, which can be quarterly (Q)
or monthly (M). % QoQ Ann. refers to the quarter on quarter annualized growth rate, % MoM refers
to (yt − yt−1)/yt−1 while Diff 12 M. refers to yt − yt−12. All series were obtained from the Haver
Analytics database.
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Table E.4:
Japan

Freq. Start Date Transformation

Real Gross Domestic Product Q Jun-1960 % QoQ Ann.
TANKAN All Industries: Actual Business Cond. Q Sep-1974 Diff 1 M.
Markit Manufacturing PMI M Oct-2001 Level
Small Business Sales Forecast M Dec-1974 Level
Small/Medium Business Survey M Apr-1976 Level
Consumer Confidence Index M Mar-1973 Level
Inventory to Sales Ratio M Jan-1978 Level
Industrial Production: Mining and Manufact. M Jan-1960 % MoM
Electric Power Consumed by Large Users M Feb-1960 % MoM
New Motor Vehicle Registration: Trucks, Total M Feb-1965 Diff 1 M.
New Motor Vehicle Reg: Passenger Cars M May-1968 % MoM
Real Retail Sales M Feb-1960 % MoM
Real Department Store Sales M Feb-1970 % MoM
Real Wholesale Sales: Total M Aug-1978 % MoM
Tertiary Industry Activity Index M Feb-1988 % MoM
Labor Force Survey: Total Unemployed M Jan-1960 % MoM
Overtime Hours / Total Hours (manufact.) M Feb-1990 % MoM
New Job Offers excl. New Graduates M Feb-1963 % MoM
Ratio of New Job Openings to Applications M Feb-1963 % MoM
Ratio of Active Job Openings and Active Job Appl. M Feb-1963 % MoM
Building Starts, Floor Area: Total M Feb-1965 % MoM
Housing Starts: New Construction M Feb-1960 % MoM
Real Exports M Feb-1960 % MoM
Real Imports M Feb-1960 % MoM

Notes: The second column refers to the sampling frequency of the data, which can be quarterly (Q)
or monthly (M). % QoQ Ann. refers to the quarter on quarter annualized growth rate, % MoM refers
to (yt − yt−1)/yt−1 while Diff 12 M. refers to yt − yt−12. All series were obtained from the Haver
Analytics database.
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Table E.5:
United Kingdom

Freq. Start Date Transformation

Real Gross Domestic Product Q Mar-1960 % QoQ Ann.
Dist. Trades: Total Vol. of Sales M Jul-1983 Level
Dist. Trades: Retail Vol. of Sales M Jul-1983 Leve
CBI Industrial Trends: Vol. of Output Next 3 M. M Feb-1975 Level
BoE Agents’ Survey: Cons. Services Turnover M Jul-1997 Level
Markit Manufacturing PMI M Jan-1992 Level
Markit Services PMI M Jul-1996 Level
Markit Construction PMI M Apr-1997 Level
GfK Consumer Confidence Barometer M Jan-1975 Diff 12 M.
Industrial Production: Manufacturing M Jan-1960 % MoM
Passenger Car Registrations M Jan-1960 % MoM
Retail Sales Volume: All Retail incl. Autom. Fuel M Jan-1960 % MoM
Index of Services: Total Service Industries M Feb-1997 % MoM
Registered Unemployment M Feb-1960 % MoM
Job Vacancies M Feb-1960 % MoM
LFS: Unemployed: Aged 16 and Over M Mar-1971 % MoM
LFS: Employment: Aged 16 and Over M Mar-1971 % MoM
Mortgage Loans Approved: All Lenders M May-1993 % MoM
Real Exports M Feb-1961 % MoM
Real Imports M Feb-1961 % MoM

Notes: The second column refers to the sampling frequency of the data, which can be quarterly (Q)
or monthly (M). % QoQ Ann. refers to the quarter on quarter annualized growth rate, % MoM refers
to (yt − yt−1)/yt−1 while Diff 12 M. refers to yt − yt−12. All series were obtained from the Haver
Analytics database.
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Table E.6:
France

Freq. Start Date Transformation

Real Gross Domestic Product Q Jun-1960 % QoQ Ann.
Industrial Production M Feb-1960 % MoM
Total Commercial Vehicle Registrations M Feb-1975 % MoM
Household Consumption Exp.: Durable Goods M Feb-1980 % MoM
Real Retail Sales M Feb-1975 % MoM
Passenger Cars M Feb-1960 % MoM
Job Vacancies M Feb-1989 % MoM
Registered Unemployment M Feb-1960 % MoM
Housing Permits M Feb-1960 % MoM
Housing Starts M Feb-1974 % MoM
Volume of Imports M Jan-1960 % MoM
Volume of Exports M Jan-1960 % MoM
Business Survey: Personal Prod. Expect. M Jun-1962 Level
Business Survey: Recent Output Changes M Jan-1966 Level
Household Survey: Household Conf. Indicator M Oct-1973 Diff 12 M.
BdF Bus. Survey: Production vs. Last M., Ind. M Jan-1976 Level
BdF Bus. Survey: Production Forecast, Ind. M Jan-1976 Level
BdF Bus. Survey: Total Orders vs. Last M., Ind. M Jan-1981 Level
BdF Bus. Survey: Activity vs. Last M., Services M Oct-2002 Level
BdF Bus. Survey: Activity Forecast, Services M Oct-2002 Level
Markit Manufacturing PMI M Apr-1998 Level
Markit Services PMI M May-1998 Level

Notes: The second column refers to the sampling frequency of the data, which can be quarterly (Q)
or monthly (M). % QoQ Ann. refers to the quarter on quarter annualized growth rate, % MoM refers
to (yt − yt−1)/yt−1 while Diff 12 M. refers to yt − yt−12. All series were obtained from the Haver
Analytics database.
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Table E.7:
Italy

Freq. Start Date Transformation

Real Gross Domestic Product Q Jun-1960 % QoQ Ann.
Markit Manufacturing PMI M Jun-1997 Level
Markit Services PMI: Business Activity M Jan-1998 Level
Production Future Tendency M Jan-1962 Level
ISTAT Services Survey: Orders, Next 3 M- M Jan-2003 Level
ISTAT Retail Trade Confidence Indicator M Jan-1990 Level
Industrial Production M Jan-1960 % MoM
Real Exports M Jan-1960 % MoM
Real Imports M Jan-1960 % MoM
Real Retail Sales M Feb-1990 % MoM
Passenger Car Registrations M Jan-1960 % MoM
Employed M Feb-2004 % MoM
Unemployed M Feb-1983 % MoM

Notes: The second column refers to the sampling frequency of the data, which can be quarterly (Q)
or monthly (M). % QoQ Ann. refers to the quarter on quarter annualized growth rate, % MoM refers
to (yt − yt−1)/yt−1 while Diff 12 M. refers to yt − yt−12. All series were obtained from the Haver
Analytics database.
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F Details About Forecast Evaluation

F.1 Setup

Using our real-time database of US vintages, we re-estimate the following three
models each day in which new data is released: a benchmark with constant long-
run GDP growth and constant volatility (Model 0, similar to Banbura and Modugno,
2014), a version with constant long-run growth but with stochastic volatility (Model
1, similar to Marcellino et al., 2014), and the baseline model put forward in this paper
with both time variation in the long-run growth of GDP and SV (Model 2). Allowing
for an intermediate benchmark with only SV allows us to evaluate how much of the
improvement in the model can be attributed to the addition of the long-run variation
in GDP as opposed to the SV. We evaluate the point and density forecast accuracy
relative to the initial (“Advance”) release of GDP, which is released between 25 and
30 days after the end of the reference quarter.37

When comparing the three different models, we test the significance of any improve-
ment of Models 1 and 2 relative to Model 0. This raises some important econometric
complications given that (i) the three models are nested, (ii) the forecasts are produced
using an expanding window, and (iii) the data used is subject to revision. These three
issues imply that commonly used test statistics for forecasting accuracy, such as the
one proposed by Diebold and Mariano (1995) and Giacomini and White (2006) will
have a non-standard limiting distribution. However, rather than not reporting any
test, we follow the “pragmatic approach” of Faust and Wright (2013) and Groen et al.
(2013), who build on Monte Carlo results in Clark and McCracken (2012). Their re-
sults indicate that the Harvey et al. (1997) small sample correction of the Diebold and
Mariano (1995) statistic results in a good sized test of the null hypothesis of equal
finite sample forecast precision for both nested and non-nested models, including cases
with expanded window-based model updating. Overall, the results of the tests should
be interpreted more as a rough gauge of the significance of the improvement than a
definitive answer to the question. We compute various point and density forecast ac-
curacy measures at different moments in the release calendar, to assess how the arrival
of information improves the performance of the model. In particular, starting 180 days
before the end of the reference quarter, and every subsequent day up to 25 days after
its end, when the GDP figure for the quarter is usually released. This means that
we will evaluate the forecasts of the next quarter, current quarter (nowcast), and the
previous quarter (backcast). We consider two different samples for the evaluation: the
full sample (2000:Q1-2014:Q2) and the sample covering the recovery since the Great
Recession (2009:Q2-2014:Q2).

37We have explored the alternative of evaluating the forecasts against subsequent releases, or the
latest available vintages. The relative performance of the three models is broadly unchanged, but all
models do better at forecasting the initial release. If the objective is to improve the performance of
the model relative to the first official release, then ideally an explicit model of the revision process
would be desirable. The results are available upon request.
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Figure F.1: Point Forecast Accuracy Evaluation

(a) Root Mean Squared Error

Full Sample: 2000:Q1-2014:Q2
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(b) Mean Absolute Error

Full Sample: 2000:Q1-2014:Q2
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Note: The horizontal axis indicates the forecast horizon, expressed as the number of days to the end
of the reference quarter. Thus, from the point of view of the forecaster, forecasts produced 180 to 90
days before the end of a given quarter are a forecast of next quarter; forecasts 90-0 days are nowcasts
of current quarter, and the forecasts produced 0-25 days after the end of the quarter are backcasts
of last quarter. The boxes below each panel display, with a vertical tick mark, a gauge of statistical
significance at the 10% level of any difference with Model 0, for each forecast horizon, as explained in
the main text.
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F.2 Point Forecast Evaluation

Figure F.1 shows the results of evaluating the posterior mean as point forecast.
We use two criteria, the root mean squared error (RMSE) and the mean absolute
error (MAE). As expected, both of these decline as the quarters advance and more
information on monthly indicators becomes available (see e.g. Banbura et al., 2012).
Both the RMSE and the MAE of Model 2 are lower than that of Model 0 starting
30 days before the end of the reference quarter, while Model 1 is somewhat worse
overall. Although our gauge of significance indicates that these differences are not
significant at the 10% level for the overall sample, the improvement in performance
is much clearer in the recovery sample. In fact, the inclusion of the time varying
long run component of GDP helps anchor GDP predictions at a level consistent with
the weak recovery experienced in the past few years and produces nowcasts that are
‘significantly’ superior to those of the reference model from around 30 days before the
end of the reference quarter. In essence, ignoring the variation in long-run GDP growth
would have resulted in being on average around 1 percentage point too optimistic from
2009 to 2014.

F.3 Density Forecast Evaluation

Density forecasts can be used to assess the ability of a model to predict unusual
developments, such as the likelihood of a recession or a strong recovery given cur-
rent information. The adoption of a Bayesian framework allows us to produce density
forecasts from the DFM that consistently incorporate both filtering and estimation
uncertainty. Figure F.2 reports the probability integral transform (PITs) and the as-
sociated ACFs for the 3 models calculated with the nowcast of the last day of the
quarter. Diebold et al. (1998) highlight that well calibrated densities are associated
with uniformly distributed and independent PITs. Figure F.2 suggests that the inclu-
sion of SV is paramount to get well calibrated densities, whereas the inclusion of the
long-run growth component helps to get a more appropriate representation of the right
hand of the distribution, as well as making sure that the first order autocorrelation is
not statistically significant.

There are several measures available for density forecast evaluation. The (average)
log score, i.e. the logarithm of the predictive density evaluated at the realization, is
one of the most popular, rewarding the model that assigns the highest probability to
the realized events. Gneiting and Raftery (2007), however, caution against using the
log score, emphasizing that it does not appropriately reward values from the predictive
density that are close but not equal to the realization, and that it is very sensitive to
outliers. They therefore propose the use of the (average) continuous rank probability
score (CRPS) in order to address these drawbacks of the log-score. Figure F.3 shows
that by both measures our model outperforms its counterparts. Interestingly, the
comparison of Model 1 and Model 2 suggests that failing to properly account for
the long-run growth component might give a misrepresentation of the GDP densities,
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Figure F.2: Probability Integral Transform (PITs)

(a) Model 0
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(e) Model 1
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(f) Model 2
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Note: The upper three panels display the cdf of the Probability Integral Transforms (PITs) evaluated
on the last day of the reference quarter, while the lower three display the associated autocorrelation
functions.

resulting in poorer density forecasts.
In addition to the above results, we also assess how the three models fare when

different areas of their predictive densities are emphasized in the forecast evaluation.
To do that we follow Groen et al. (2013) and compute weighted averages of Gneiting
and Raftery (2007) quantile scores (QS) that are based on quantile forecasts that
correspond to the predictive densities from the different models (Figure F.4).38 Our
results indicate that while there is an improvement in density nowcasting for the entire
distribution, the largest improvement comes from the right tail. For the full sample,
Model 1 is very close to Model 0, suggesting that being able to identify the location
of the distribution is key to the improvement in performance. In order to appreciate
the importance of the improvement in the density forecasts, and in particular in the
right side of the distribution, we calculated a recursive estimate of the likelihood of a
‘strong recovery’, where this is defined as the probability of an average growth rate of
GDP (over the present and next three quarters) above the historical average. Model
0 and Model 2 produce very similar probabilities up until 2011 when, thanks to the
downward revision of long-run GDP growth, Model 2 starts to deliver lower probability
estimates consistent with the observed weak recovery. The Brier score for Model 2 is

38As Gneiting and Ranjan (2011) show, integrating QS over the quantile spectrum gives the CRPS.
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Figure F.3: Density Forecast Accuracy Evaluation

(a) Log Probability Score

Full Sample: 2000:Q1-2014:Q2
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(b) Continuous Rank Probability Score

Full Sample: 2000:Q1-2014:Q2
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Note: The horizontal axis indicates the forecast horizon, expressed as the number of days to the end
of the reference quarter. Thus, from the point of view of the forecaster, forecasts produced 180 to 90
days before the end of a given quarter are a forecast of next quarter; forecasts 90-0 days are nowcasts
of current quarter, and the forecasts produced 0-25 days after the end of the quarter are backcasts
of last quarter. The boxes below each panel display, with a vertical tick mark, a gauge of statistical
significance at the 10% level of any difference with Model 0, for each forecast horizon, as explained in
the main text.
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0.186 whereas the score for Model 0 is 0.2236 with the difference significantly different
at 1% (Model 1 is essentially identical to Model 0).39

In sum, the results of the out-of-sample forecasting evaluation indicate that a model
that allows for time-varying long-run GDP growth and SV produces short-run forecasts
that are on average (over the full evaluation sample) either similar to or improve upon
the benchmark model. The performance tends to improve substantially in the sub-
sample including the recovery from the Great Recession, coinciding with the significant
downward revision of the model’s assessment of long-run growth. Furthermore, the
results indicate that while there is an improvement in density nowcasting for the entire
distribution, the largest improvement comes from the right tail.

39The results are available upon request.
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F.4 Case Study - The Decline of The Long-Run Growth Es-
timate in Mid-2011

Figure F.5 looks in more detail at the specific information that, in real time, led
the model to reassess its estimate of long-run growth. While data since the middle of
2010 had already started shifting down the estimate, the publication by the Bureau
of Economic Analysis of the annual revisions to the National Accounts in July 29th,
2011 were critical for the model’s assessment. The vintages after that date show not
just that the contraction in GDP during the recession was much larger than previously
estimated, but even more importantly, it reduced the average growth rate of the sub-
sequent recovery from 2.8% to about 2.4%. In short, by the end of July 2011 (well
before structural break tests arrived at the same conclusion), enough evidence had ac-
cumulated about the weakness of the recovery to shift the model’s estimate of long-run
growth down by almost half a percentage point, very close to the final out-turn of 1.7%.

Figure F.5: Impact of July 2011 National Account Revisions

(a) Evolution of the Annual 2011 GDP Forecast
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(b) National Accounts Revisions around July 2011
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Note: Panel (a) shows the evolution of the annual GDP growth forecast for 2011 produced by the
model. The light dashed line represents the counterfactual forecast that would result from shutting
down fluctuations in long-run growth. The vertical line marks the release of the National Accounts
revisions on 29th July 2011, and the green diamond marks the out-turn. Panel (b) shows the level of
real GDP (in bn USD) before and after the revisions.
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